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A growing literature suggests that the hippocampus is critical for the rapid

extraction of regularities from the environment. Although this fits with the

known role of the hippocampus in rapid learning, it seems at odds with the

idea that the hippocampus specializes in memorizing individual episodes.

In particular, the Complementary Learning Systems theory argues that there

is a computational trade-off between learning the specifics of individual

experiences and regularities that hold across those experiences. We asked

whether it is possible for the hippocampus to handle both statistical learning

and memorization of individual episodes. We exposed a neural network

model that instantiates known properties of hippocampal projections and sub-

fields to sequences of items with temporal regularities. We found that the

monosynaptic pathway—the pathway connecting entorhinal cortex directly

to region CA1—was able to support statistical learning, while the trisynaptic

pathway—connecting entorhinal cortex to CA1 through dentate gyrus and

CA3—learned individual episodes, with apparent representations of regu-

larities resulting from associative reactivation through recurrence. Thus, in

paradigms involving rapid learning, the computational trade-off between

learning episodes and regularities may be handled by separate anatomical

pathways within the hippocampus itself.

This article is part of the themed issue ‘New frontiers for statistical learning

in the cognitive sciences’.
1. Introduction
The Complementary Learning Systems (CLS) theory [1] provides a powerful

computational framework for understanding the distinct roles that the hippo-

campus and cortex play in representing memories. It demonstrates the

fundamental trade-off between memorizing the specifics of individual experi-

ences (e.g. where I parked my car today), which benefits from separate

representations for each experience, and extracting regularities across those

experiences (e.g. where in the parking lot spaces tend to be open), which benefits

from overlapping representations.

To solve this trade-off, CLS posits that the brain recruits different systems:

the hippocampus uses a high learning rate and sparse, relatively non-

overlapping ( pattern-separated) representations to quickly store memory traces

for each recent experience without interference from other similar recent experi-

ences. The hippocampus then slowly teaches these experiences to cortical areas

during offline periods, such as sleep. The cortex has a slow learning rate and

overlapping representations, which allow it to extract and represent regularities

across experiences—over days, months, and years.
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Figure 1. Model architecture. ECin serves as input and ECout as output for the
network. The network is trained to reproduce the pattern of activity in ECin on
ECout. Three hidden layers—DG, CA3, and CA1—learn representations to sup-
port this mapping, with activity flow governed by the projections indicated
by the arrows. Blue arrows make up the TSP and green arrows make up the
MSP. This snapshot shows network activity during pair structure learning,
where pair AB is presented to the network and successfully reproduced in
ECout. The height and yellowness of a unit both index its activity level.
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Although CLS has been successful in accounting for

many empirical findings [2], it has not been used to address

an important type of learning: apart from memorizing indi-

vidual experiences rapidly and learning regularities across

those experiences over long periods of time, we can also

learn regularities rapidly—over minutes or hours [3]. Criti-

cally, there have been several empirical demonstrations that

the hippocampus is involved in, and even necessary for,

such rapid statistical learning [4–11].

These findings pose a challenge for CLS and, more gener-

ally, for the traditional view that the hippocampus solely

supports memory for distinct episodes. In neural network

models, regularities are most effectively extracted via overlap-

ping representations, which facilitate automatic generalization

between stimuli based on this shared neural substrate [1].

However, the hippocampus in CLS does not employ over-

lapping representations—to the contrary, it specializes in

minimizing such overlap to prevent interference [1,12]. Thus,

although the learning rate of the hippocampus is well suited

to the timescale of rapid statistical learning, the mechanism

by which it can represent regularities is unclear.

To address this puzzle, we investigate a potential role for

the heterogeneous properties across different subfields and

pathways of the hippocampus. We ran simulations of statisti-

cal learning using a recent version of a hippocampal neural

network model that instantiates the episodic learning com-

ponent of CLS [13]. The model explains how known

anatomical pathways in the hippocampus and subfield prop-

erties might together support episodic memory. It contains

hippocampal subfields dentate gyrus (DG), cornu ammonis

3 (CA3), and CA1, as hidden layers that learn to map input

provided by superficial layers of entorhinal cortex (ECin) to

output through deep layers of EC (ECout; figure 1). Layers

in the model are composed of units, which simulate a rate

code of the spiking activity of neurons or small populations

of neurons. Units in different layers can be linked with

weighted connections, which represent the efficacy of the
synapse(s) between the neurons and determine how activity

spreads from one unit to another.

There are two main pathways connecting these subfields in

the hippocampus, and correspondingly in the model: the trisy-

naptic pathway (TSP), ECin! DG! CA3! CA1, and the

monosynaptic pathway (MSP), EC$ CA1. The sets of connec-

tion weights, or projections, between layers within the TSP are

sparse (a small subset of units are connected between layers),

and CA3 and especially DG have high levels of within-layer

inhibition. High connection sparsity and high inhibition

result in few units being active at any time in DG and CA3

(figure 1) and allow the layers to avoid interference by forming

separated, conjunctive representations of incoming patterns,

even when the patterns are highly similar. The projections

within the TSP also have a very high learning rate. These prop-

erties together make the TSP the engine for rapid encoding and

pattern separation of episodic memories in the hippocampus.

The TSP, with the help of strong recurrent connections within

CA3, also serves to retrieve previously memorized patterns

from partial cues ( pattern completion).

By contrast, the projections within the MSP are not as

sparse, and the inhibition is lower, allowing more units to be

active at any time in CA1 (figure 1). The MSP projections also

have a relatively lower learning rate. The higher level of pattern

overlap (due to more units being active for each input) and

the lower learning rate make CA1 more cortex-like. Indeed,

the region has acted in extant models as a translator between

sparse representations in the TSP and overlapping represen-

tations in EC. The role of the MSP has simply been to help

the hippocampus communicate with cortex.

To investigate how these different projections and sub-

fields might support rapid statistical learning, we chose

three learning paradigms for simulation that require extract-

ing regularities on the timescale of minutes to hours. All

have been linked to the hippocampus, with representations

of associated stimuli coming to be represented more similarly

[5,6,14]. The first, pair structure, is an example of the classic

statistical learning paradigm [6,15–17], in which a continuous

sequence of items is presented to participants during passive

viewing or a cover task. Unbeknownst to them, the sequence

contains embedded regularities in terms of which items tend

to follow each other. Pair or triplet regularities (pairs in our

simulation) are each composed of a fixed set of arbitrarily

chosen items that repeatedly occur in the same order, while

the order of the pairs/triplets is random. Because items are

presented continuously, one at a time, and there are no

timing or other cues as to the event boundaries, this task

requires integrating statistics over time in order to uncover

the regularities—namely, the higher transition probability

within versus between pairs. An additional target for our

simulations is the finding that infants show learning in this

paradigm despite underdeveloped TSPs [17,18].

The second paradigm, community structure [5,19], again

involves a continuous sequence of items with hidden groupings,

but in contrast, the sequence is generated such that transition

probabilities between adjacent items are uninformative about

these groupings, and instead higher level sensitivity to associ-

ations shared across items is required to learn the groupings.

This paradigm allows us to explore how higher level learning

might occur in the model, and in the hippocampus.

Finally, there is a class of learning paradigms, includ-

ing transitive inference, acquired equivalence, and associative
inference, that also probe memory for indirect associations

http://rstb.royalsocietypublishing.org/
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(i.e. associations not based on directly observed item pairings, but

rather on the fact that certain pairs share associates). Although

these paradigms are not considered conventional statistical learn-

ing paradigms, in that there is no need for segmentation from

otherwise undifferentiated input, they share the requirement

for rapid integration across experiences over time and thus may

tap into the same learning mechanisms as the pair and commu-

nity structure paradigms above [20]. To explore this possibility,

we include a simulation of associative inference.

When confronting the hippocampal model with these

different kinds of structured input, we found that—in addition

to its role translating between the TSP and EC—the MSP took

on a new role: it learned and represented the regularities. Both

representational similarity and recurrent activity dynamics

contributed, making contact with a recent computational

model of how recurrent activity in the hippocampus can sup-

port generalization [21]. Combined with the role of the TSP

in rapid learning of the specifics of individual experiences,

these findings reconcile the trade-off between episodic

memory and statistical learning by suggesting that the

hippocampus itself contains complementary learning systems.
9

2. Material and methods
(a) Model architecture
We built on a neural network model of the hippocampus that has

been successful in accounting for episodic memory phenomena,

and incorporates known projections and properties of hippocam-

pal subfields [12,13,22]. We used a recent implementation [13] in

the Emergent simulation environment [23], v. 7.0.1. Our project

was modified from hip.proj [24], as it was implemented for

version 6 of Emergent. See the electronic supplementary

material, tables S1 and S2, for parameter details.

(i) Activity dynamics
The model is composed of units with activity levels ranging from

0 to 1. A unit’s activity is proportional to the activity of all units

connected to it, weighted by the value of each of the connection

weights between them. A unit’s activity is also modulated by

local inhibition between units within a layer. The inhibition cor-

responds to the activity of inhibitory interneurons, implemented

in these simulations using a set-point inhibitory current with a

k-winners-take-all dynamic. (See [24,25] for details and equations.)

(ii) Input/output
Superficial layers of EC (ECin) provide input to the hippocampus

and deep layers of EC (ECout) provide output. ECin and ECout

use orthonormal representations in these simulations—each item

in the paradigm was represented by activation of one unit (with

the number of units in ECin and ECout varying across paradigms).

There is also a separate Input layer, not shown, with the same

number of units as ECin and one-to-one connections to ECin.

Input was clamped in this layer so as to allow ECin to also receive

input from ECout, completing the ‘big loop’ of the model. To clamp

input, the units in the Input layer corresponding to the current and

previous stimulus were forced to maintain high activity, while all

other units were forced to have no activity. Activity travelled from

the Input layer to the stimulus representations in ECin, then to the

rest of the network. ECin and ECout each had inhibition set so that

two units could be active at a time (k ¼ 2), unless otherwise noted.

(iii) Trisynaptic pathway
ECin projects to DG and CA3 in the TSP. These projections are

sparse, reflecting known physiology. Each DG and CA3 unit
receives input from 25% of the ECin layer, and the ‘mossy fibre’

projection from DG to CA3 is even sparser (5%). DG and CA3

additionally have high levels of within-layer inhibition. CA3

also has a fully connected (every unit to every other) projection

to itself, which helps bind pieces of a representation to one

another and retrieve a full pattern from a partial cue. CA3 then

has a fully connected projection to CA1, completing the TSP.

(iv) Monosynaptic pathway
There are fully connected projections in the MSP from ECin to

CA1, CA1 to ECout, and ECout to CA1. CA1 has much less

local inhibition than DG and CA3. See the electronic supplemen-

tary material for discussion of the removal of the MSP ‘slots’

used in previous versions of the model.

(v) Network initialization
For each simulation, we ran 500 networks. Each network corre-

sponds to a particular randomized configuration of the sparse

projections in the TSP and to randomly re-initialized weights

throughout the network. All analyses were done within each of

the 500 networks, and results were then averaged across net-

works. These randomly re-initialized networks were treated as

random effects in statistical tests.

(b) Learning
The model is trained to adjust connection weights between units

such that it can duplicate the patterns presented to ECin on ECout.

The learning in the version of the model used here [13] is differ-

ent from older versions in two important ways. First, whereas

previous versions used only Hebbian learning, this version

uses a combination of error-driven and Hebbian learning

[12,13,25]. The error-driven component uses Contrastive Hebbian

Learning [26], which adjusts connection weights such that

activity during a ‘minus phase’ becomes more similar to activity

during a ‘plus phase.’ In the minus phase, the model uses its exist-

ing connections to try to produce the correct output given the input,

and in the plus phase, the model is directly shown the correct

output. The difference between the minus and plus phase activity

patterns is the error. Adjusting weights so that minus phase activity

looks more like plus phase activity results in the model being more

likely to produce the correct output in the future. Incorporating this

error-driven learning into the model results in increased memory

capacity [13]. The second update to the learning algorithm is that

previous versions pre-trained the MSP weights, whereas this ver-

sion trains the MSP online, at the same time as the TSP, which

also results in better memory capacity [13].

The learning procedure used here is based, as in other models

[27], on empirical findings of differences in projection strengths

between subfields at different phases of the hippocampal theta

oscillation [28]. At the trough of the theta cycle, as measured at

the hippocampal fissure, EC has a stronger influence on CA1,

whereas at the peak, CA3 has a stronger influence on CA1. The

model instantiates these two phases of theta as two minus

phases on each trial. In one, ECin projects strongly to CA1, and

CA3! CA1 is inhibited; this corresponds to a discrete sample of

the theta trough. In the other, CA3 projects strongly to CA1, and

ECin! CA1 is inhibited; this corresponds to a discrete sample of

the theta peak. These phases have been proposed to correspond

to encoding- and retrieval-like states: a strong influence of ECin

on CA1—a state where external input directly influences CA1—

is considered more akin to encoding, while a strong influence of

CA3 on CA1 is more akin to retrieval [27].

Activity during each of the two minus phases in a trial is con-

trasted with activity during a plus phase, in which the target

pattern is directly clamped on ECout. Weights are changed after

each trial such that patterns of unit coactivity during each

minus phase are shifted more towards those of the plus phase.

http://rstb.royalsocietypublishing.org/
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Modification of the model’s internal representations to better

align with the observed environment is a general property of

error-driven learning algorithms, but in the case of the hippo-

campus may be related to the idea that the region carries out

match/mismatch computations [29,30]. The learning rate in the

TSP is set to be 10� higher than in the MSP. See Ketz et al.
[13] and the electronic supplementary material, table S2 for

more details. Note, however, that we use the version of the

model implemented in O’Reilly et al. [24], which uses Contrastive

Hebbian Learning for all learnable projections, as opposed to

pure Hebbian learning used for some TSP projections in Ketz

et al. [13] (though the results do not depend on this difference).

(c) Stimulus presentation
To simulate sequential item presentation, we presented items to

ECin using a moving window that encompassed the current and

previous items. This approach is based on findings that the rep-

resentation of a previous stimulus persists over delays in EC

[31,32]. Lesions to parahippocampal regions but not to hippo-

campus proper impair delayed non-match to sample performance

[33–35], suggesting that these regions may be more important

than the hippocampus in maintaining simple traces of past stimuli.

We included temporal asymmetry, presenting the current

item with full activity (clamped value ¼ 1) and the previous

item with decayed activity (0.9). During training, one trial (last-

ing 100 processing cycles) consisted of the presentation of two

such items for two minus phases and one plus phase.

(d) Testing and analyses
We tested the network with trials in which each stimulus was

presented by itself as the input, without the trailing activity of

the preceding item and without a target pattern. On each trial,

we clamped the activity of the Input layer unit for the stimulus

to 1 and recorded the activity level of each unit throughout the

network after 20 cycles of processing (initial response), and

after the network had fully settled (we used 80 cycles, though

40–50 cycles are usually enough). We chose 20 cycles for the

initial response because at that point activity has spread through-

out the network, including to ECout, but not from ECout to ECin

(preventing big-loop recurrence). For some simulations, we

also looked at the activity evoked by pairs of items, in which

case input units for both items were clamped to 1.

During test, network representations were assessed in a neu-

tral state, where the projections between layers were scaled to

values in between the encoding-like and retrieval-like states

described in the Learning section. No connection weights were

changed during testing. Networks were tested before training

(epoch 0) and after every epoch of training. An epoch is a group-

ing of multiple trials, with the number of trials per epoch

specified below for each simulation.

(i) Output analyses
We assessed the probability, after settling, of activating a particu-

lar item in ECout above 0.5 given presentation of a particular item

in ECin.

(ii) Pattern analyses
We recorded the pattern of unit activity evoked by each test item,

in each hidden layer, for the initial and settled response. We cal-

culated Pearson correlations between the patterns evoked by

different items.

(e) Lesions
To help assess the contribution of particular pathways to network

behaviour, we simulated lesions. To lesion the TSP, we set the
strength of the following projections to 0: ECin! DG, ECin!
CA3, DG! CA3, CA3! CA3, and CA3! CA1 (all blue projec-

tions in figure 1). To lesion the MSP, we set the strength of ECin

! CA1 to 0. We did not alter the CA1! ECout projection,

though it could be considered part of the MSP, because this projec-

tion is required for producing output in the model. It is important

to note that although TSP lesions can reveal the independent

functions of the MSP, a MSP lesion does not cleanly reveal

the contribution of the TSP, as the MSP always serves to facili-

tate communication between the TSP and EC. Pathways were

lesioned during both training and testing. Other reported lesions

were similarly implemented by setting the strength of specified

projections to 0.
3. Results
(a) Learning episodes versus regularities
We tested whether a model of the hippocampus designed to

simulate episodic memory [12,13] can pick up on statistics in

continuous sequences. In prior simulations using this model,

the episodes to be learned were clearly demarcated for the

model; for example, the model was used to simulate exper-

iments in which subjects were shown word pairs and asked

to memorize that they go together [12]. By contrast, in statistical

learning experiments, there is a continuous sequence of stimuli

with no demarcations of event boundaries. The only way to

detect the regularities is to track statistics across experiences.

We exposed the model to sequences containing embedded

pairs. There were eight items (A–H ) grouped into four pairs

(AB, CD, EF, GH). Items within a pair always occurred in a

fixed order but the sequence of pairs was random. Specifically,

the second item in a pair could transition to the first item in one

of the three other pairs. Back-to-back repetitions of a pair were

excluded, since this is a common constraint in statistical learn-

ing experiments and because allowing repetitions would dilute

the temporal asymmetry (both AB and BA would be exposed).

There was a moving window of two stimuli presented at a time.

After AB, for example, BC, BE, or BG followed with equal prob-

ability; if BC was chosen, the next input would be CD. To detect

regularities, the model had to be sensitive to the fact that, over

time, pairs (e.g. AB) occurred more often than sets of two items

spanning pairs (e.g. BC). To contrast this learning challenge

with a more ‘episodic’ situation with demarcated events, we

also ran simulations where pairs were presented in interleaved

order, with no transitions between pairs. In other words, AB,

CD, EF, and GH all appeared but never BC or FG, for example.

Note that we will use A and B to refer to the first member and

second member of a pair, respectively. All results are averaged

across the four pairs.

Different representations emerged in the model for

sequences that did versus did not require sensitivity to statistics

across trials. For the latter, ‘episodic’ sequences (with demar-

cated pairs), the network quickly learned to activate both

members of a pair in ECout (A and B), when presented with

either pairmate individually (A or B; figure 2c). The hidden

layers learned representations that allowed the model to per-

form this mapping between ECin and ECout (figure 2a). In

particular, CA3 and DG in the TSP rapidly memorized con-

junctive representations of each pair (i.e. memorized the

distinct pattern of activity evoked by presentation of both

pair members at once). Because each item had only been

viewed in one pair, this memorization caused each pairmate,

on a given test trial, to immediately pattern complete to this

http://rstb.royalsocietypublishing.org/
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Figure 2. Pair structure. (a) Average representational similarity across networks in each of the three hidden layers of the model, after training on episodic sequences
that did not require statistical learning (SL). In the heatmaps, each of the eight test items appears in the rows and columns, the diagonals correspond to patterns
correlated with themselves, and the off-diagonals are symmetric. (b) Average representational similarity by pair type, for the initial and settled response. ‘Shuffled’
pairs are items paired with all other items that were not the trained pairmate (e.g. AC, DA), including both viewed pairings (e.g. DA) and unviewed pairings (e.g.
AC). (c) Average probability of activating a particular item on the output given a particular item on the input, over training. For example, A! B is the probability of
activating the second member of a pair above threshold given the first. ‘Incorrect’ is the probability of producing an item that is not the current item or its pairmate.
Each input was presented once per epoch in permuted order. (d – f ) Same as above, for sequences that required SL. Each pair was presented approximately five
times per epoch (with 80 total inputs per epoch). For all subplots, values are means across 500 random network initializations. Error bars denote +1 s.e.m. across
network initializations. Some error bars are too small to be visible.
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conjunctive representation. CA3’s initial pair similarity was

somewhat lower than DG’s because the two sets of sparse pro-

jections—ECin! DG, DG! CA3—make it more difficult for

CA3 to integrate across paired items.

Initial similarity in CA1 was much weaker after training

(figure 2b) simply because CA1 learns more slowly (CA1

initial pattern similarity becomes higher after longer training,

not shown), but this slower learning rate does not detract

from CA1’s ability to help communicate information in
CA3 to ECout. After the pattern is completed in ECout and

information travels to ECin, the similarity structure is then

strongly apparent in the settled response in all hidden layers.

What happens when the events to be memorized are not

demarcated and must be learned over time from temporal stat-

istics? The model was still able to learn the pairs, activating B
on ECout given A on ECin at test, and vice versa (figure 2f ),
despite each of those items also being exposed with three

other items. Unlike the previous simulation, there was a
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striking lack of pair-related similarity in the initial response in

DG and CA3 after training (figure 2d). Pair similarity was

slightly higher than shuffled pair similarity (figure 2e) but

not for the subset of shuffled pairs that appeared as across-

pair transitions (e.g. DA; electronic supplementary material,

figure S1).

The checkerboard structure in DG and CA3 reflects the

fact that both AB and DA occurred in the sequence, but

never AC. That is, these regions are sensitive to which items

have co-occurred, but do not preferentially retrieve an

item’s most frequently co-occurring mate. DG memorizes

every exposed input pattern, and when given a cue like A
that is part of more than one pattern, activates units involved

in all conjunctive representations of exposed patterns that

included A (including AB but also the other exposed patterns

DA, FA, and HA). After the network retrieves B on ECout (due

to the influence of CA1, as described below), B in addition to

A becomes active in ECin, and the DG representation shrinks

down to only the units involved in the AB conjunctive rep-

resentation. For this reason, pair structure emerges after the

network has settled. The dynamics are similar though not

quite as clean in CA3.

In contrast to the previous simulation, CA1 here showed

robust similarity for the paired items in its initial (and settled)

response. This is because there was enough exposure for CA1

to learn representations with its slower learning rate, and

because distributed, overlapping representations are highly

sensitive to frequencies of occurrence [36].

These simulations indicate that the TSP and MSP form

different representations depending on the learning problem.

When sensitivity to statistics is not required, the TSP mem-

orizes each of the presented patterns and can complete them

from a partial cue, while CA1 simply acts as a translator

between CA3 and EC. When sensitivity to statistics is required,

the TSP unhelpfully captures both the pairs and the transitions

between them, while the MSP is able to represent the frequen-

cies of item co-occurrence. In both cases, pattern completion

expressed in ECout causes the pairmate to arrive on ECin, and

the pair’s representation activates throughout the network.

(i) Temporal asymmetry
Paired items always appeared in a fixed order AB and never

in the reverse order BA (because back-to-back pair repetitions

were not allowed), with the previous item less active than the

current item. Thus, learning of the pairs had the potential to

be asymmetric in time, with either a forward bias or a back-

ward bias. We found the former: B was more likely to be

activated in the output layer given A as input than A was

given B (figure 2f ). This results from the higher activity of

B compared to A when AB is presented in training, causing

more strengthening of the weights connecting to B’s output

unit than to A’s. This is consistent with findings that the hip-

pocampus is involved in prediction rather than retrodiction

[6,7,37–39].

(ii) Representational change over time
Though the TSP does not represent regularities in the initial

response at the end of training, there is an earlier period

where it does represent them weakly, and in fact the effect

in this period is stronger in DG than CA1 (electronic sup-

plementary material, figure S1a). This occurs because the TSP

rapidly learns whatever it is exposed to, and the true pairs AB
do occur more frequently. However, as the network gains

more exposure to all transitions (BC, DA, etc.), weights max

out and the similarity for across-pair transitions fully catches

up. As B pulls away from AB and towards BC, the relatively

greater similarity for pairmates weakens. CA1’s similarity struc-

ture does not weaken over time in this way, even with extensive

training (electronic supplementary material, figure S1c,d). To

assess the impact of these TSP dynamics on the model’s behav-

iour, we ran simulations with the MSP lesioned. The TSP alone

initially supported weak retrieval of the correct pairmate (and

showed the same temporal asymmetry as the intact network),

but over time, within- and across-pair transitions were retrieved

equally (electronic supplementary material, figure S1b). Thus,

by the end of training, a network with an MSP lesion exhibits

virtually no sensitivity to regularities.

(iii) Statistical learning with an undeveloped TSP
Infants are good at statistical learning despite having immature

hippocampi [16,17], and our model suggests that this may be

because the MSP develops earlier than the TSP [18,40]. To test

the boundary case of infants only having access to the MSP

(though they may have some limited use of the TSP), we ran

additional simulations with the TSP lesioned. We found that

learning and representations were essentially unchanged (elec-

tronic supplementary material, figure S2). In fact, pairmate

retrieval was slightly better without versus with the TSP (at

the end of training, mean A! B retrieval: 0.98 versus 0.94,

respectively, t998 ¼ 6.66, p , 0.001; mean B! A retrieval: 0.90

versus 0.87, t998 ¼ 2.49, p ¼ 0.01). This stands in contrast to

the very detrimental effects of an MSP lesion (electronic sup-

plementary material, figure S1b), revealing that the MSP is

necessary and sufficient for statistical learning and providing

a possible explanation for intact rapid statistical learning in

infants despite protracted hippocampal development.

(b) Higher level learning
The structure of the sequences considered so far was simple—it

could be learned by tracking the strength of transition probabil-

ities between adjacent items or the joint frequencies of pairs.

To examine how the MSP handles higher level, more complex

statistics, we simulated learning of a ‘community structure’

sequence that cannot be parsed based on transition probability

or joint frequency [5,19]. The sequence was generated via a

random walk on a graph (figure 3b) with three densely inter-

connected ‘communities’ of nodes [41]. The walk tends to

stay in a community for a while before transitioning to the

next, but any individual node has an equal probability of tran-

sitioning to exactly four other nodes. We constrained the

sequences such that the observed joint frequencies were exactly

equated in each epoch (as opposed to equated on average).

Thus, transition probabilities did not provide information

about the location of community boundaries. To learn these

boundaries, it was necessary to pick up on the fact that

nodes in the same community were connected to overlapping

sets of other nodes, whereas nodes from different communities

were not.

The only change to the architecture and parameters for this

simulation was the addition of seven units to ECin and ECout to

accommodate the 15 nodes in the graph (versus the eight

paired items). We exposed the model to sequences in the

same way as for the pair structure paradigm, with two items

presented at a time in a moving window and the previous
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Figure 3. Community structure. (a) Average representational similarity after training, with items arranged by community (black boxes; grey bars mark boundary
nodes). (b) Graph with three communities of nodes. Each node on the graph represents a particular item, and the edges indicate which transitions were allowed
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boundary nodes from the same community (within boundary), two adjacent boundary nodes from different communities (across boundary), and all other pairs of
items from different communities (across other).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160049

7

 on May 5, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
item less active than the current item. Note that there was no

temporal asymmetry in the stimulus sequences for this simu-

lation, though, as the edges in the graph were bidirectional

and thus every pair of connected nodes occurred in both

orders. There were 60 inputs per epoch, and 10 total epochs.

The model successfully learned to activate other items

from a test item’s community (figure 3c). Notably, this was

still true when restricting analysis to the boundary items:

by the end of training, tested boundary items almost never

activated the adjacent boundary node in a different commu-

nity in preference to one of the adjacent nodes in the same

community. The network again exhibited different represen-

tational similarity in the initial and the settled response

(figure 3a): DG and CA3 initially represented all exposed

pairs but largely ignored higher level structure; by contrast,

CA1 was immediately sensitive to higher level structure.

This is best illustrated at community boundaries: two

adjacent boundary nodes were directly observed together

during training despite being from different communities,

whereas two boundary nodes in the same community were

never seen together in training and could only be associated

transitively through other nodes in the community. Thus, high

similarity for within-community boundaries means that a

region has learned structure beyond basic co-occurrence stat-

istics. This was found in the initial response in CA1
(figure 3e), although it also had high similarity for across-

community boundaries. DG and CA3 showed low similarity

for within-community boundaries and high similarity for

across-community boundaries, indicating that these regions

had poor sensitivity to the higher level structure.

Consistent with these findings of robust higher level rep-

resentations in the initial response of the MSP but not TSP,

lesioning the TSP did not affect network behaviour (prob-

ability of activating a node from the same community given

a boundary node¼ 0.95, versus intact: t998 ¼ 1.74, p ¼ 0.083),

whereas lesioning the MSP resulted in very poor behaviour

(0.63, versus intact: t998 ¼ 16.6, p , 0.001). Note that this prob-

ability being lower than 0.75 indicates that the MSP lesion also

degraded the model’s ability to learn direct adjacencies, as

choosing randomly among a boundary node’s neighbours

would produce a 0.75 probability.

After allowing big-loop recurrence, the higher level struc-

ture became clearer in CA1, and throughout the network.

Community structure fullyovertook adjacency, with an increase

in within-community boundary similarity and a decrease in

across-community boundary similarity (figure 3d,e). To under-

stand why, consider what happens when a boundary item is

presented at test: it retrieves a directly linked associate, which

is more likely to be an internal node from the same community

than the boundary node from the other community, because of

http://rstb.royalsocietypublishing.org/


DG CA3 CA1
in

iti
al

 r
es

po
ns

e
se

ttl
ed

 r
es

po
ns

e
w

ith
 r

ec
ur

re
nc

e
se

ttl
ed

 r
es

po
ns

e
w

ith
ou

t r
ec

ur
re

nc
e

representations after training on associative inference

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A
B
C
D
E
F
G
H
I

A B C  D E F G H I A B C  D E F G H I A B C  D E F G H I

A B C D E F G H I A B C D E F G H I A B C D E F G H I

A B C D E F G H I A B C D E F G H I A B C D E F G H I

pattern similarity with
one exposure to each pair 

pattern similarity
after training

0

0.1

0.2

0.3

output with
one exposure 

0

0.2

0.4

0.6

0.8

1.0

transitive direct 

output after
training 

initial
transitive 
initial
direct 

settled
transitive 
settled
direct 

output, without
recurrence

output, with
recurrence

m
ea

n 
co

rr
el

at
io

n 
be

tw
ee

n 
pa

tte
rn

s
m

ea
n 

co
rr

el
at

io
n 

be
tw

ee
n 

pa
tte

rn
s

pr
ob

ab
ili

ty
 o

f 
pr

od
uc

in
g 

ite
m

pr
ob

ab
ili

ty
 o

f 
pr

od
uc

in
g 

ite
m

0

0.1

0.2

0.3

0.4

DG CA3 CA1

0

0.2

0.4

0.6

0.8

1.0

DG CA3 CA1

transitive direct  

r

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
–0.1

(e)

(b)
(a)

(c)

(d )

Figure 4. Associative inference. (a) Average representational similarity after training, with items arranged by triad. The settled response is shown with and without
recurrence allowed. The initial response was very similar for the two variants and is shown with recurrence. (b) Similarity structure after one training trial with each
of the direct pairs. The pattern correlations between members of direct AB pairs and between members of transitive AC pairs are shown, subtracting the correlation
for shuffled pairs as a baseline. This is shown for the initial and settled response, in both cases in networks with recurrence allowed (though only the settled
response is affected by recurrence). (c) The probability of producing the direct pairmate (B given A) and transitive pairmate (C given A), subtracting the probability
of producing other items as a baseline, with and without recurrence. We allowed any above-zero activity in ECout units to count as ‘producing the item’, simulating
the sensitive forced choice test used in associative inference studies [14]. (d,e) Same as b, c for fully trained network.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160049

8

 on May 5, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
greater within-community internal versus across-community

boundary similarity (figure 3e). ECout will send activity for

that internal node to ECin, which then travels to the hidden

layers and further emphasizes the representations of nodes in

that community, including the other boundary node in the com-

munity that is only associated transitively through other

community members. We verified that the difference between

the initial and settled representational similarity was indeed

attributable to big-loop recurrence (versus recurrence in activity

between CA1 and ECout), by lesioning either ECout! ECin

(needed for big-loop recurrence) or ECout! CA1 during test-

ing. Higher level behaviour was unchanged in the ECout!
CA1 lesioned network but much weaker in the ECout! ECin

lesioned network.
(c) Associative inference
We next simulated an associative inference paradigm, which

requires higher level integration as in the community struc-

ture paradigm, but without the continuous presentation of

individual items characteristic of temporal statistical learning.

We ran these simulations to explore whether the MSP learn-

ing mechanisms implicated above in statistical learning can

also subserve other related forms of learning. In associative

inference, two items A and B are presented together, and in

separate trials, B and C are presented together. Humans

and animals are then able to infer that A goes with C [20].
We trained the model on three such triads: ABC, DEF, and

GHI. We presented each AB and BC pair 10 times per epoch

in permuted order, over 20 epochs. Because the paradigm

involves presenting two stimuli at a time, both stimuli were

presented with full activity in the input. We made one

change to the network parameters in addition to changing

the number of units in ECin and ECout to 9: to allow the

model the possibility of activating the transitive associate

(C given A) and not just itself and its direct associate

(A and B given A), which is its strong tendency with k ¼ 2,

we lowered inhibition to k ¼ 3 in ECin and ECout when testing

the network (during training, k ¼ 2, as before). This is critical

for accounting for transitive behaviour. See the electronic

supplementary material, figures S3 and S4 for discussion of

this point and simulations showing how k ¼ 3 at test affects

pair structure and community structure simulations (in

short, it enhances higher level structure in the latter and

adds a small amount of noise to the former).

The results of these simulations matched the community

structure simulations. In the initial response, DG/CA3 rep-

resented direct pairs AB and BC, but not transitive pair AC,

whereas CA1 had graded similarity structure that reflected

transitive relationships (figure 4a).

There has been recent debate as to whether this task is

solved using recurrence or ‘static’ representational simi-

larity—overlap in representational space that is not a result

of recurrent activity dynamics [20,21,32,42]. To explore this
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issue in our model, we contrasted pattern similarity in the

settled response for networks with and without recurrence

during test. Networks without recurrence had ECout! ECin

and ECout! CA1 connections lesioned (only in the test

phase), so that representational similarity and behaviour

must be caused by the representations in the initial response.

The transitive structure was present without recurrence

in CA1, but became stronger throughout the network

with recurrence (figure 4a), indicating that both static rep-

resentational similarity and recurrence contribute to

transitive associations in the model.

Another way to evaluate the role of recurrence is to assess

representations and behaviour very early in training, before

CA1 has time to develop overlapping representations for tran-

sitive associations. After just one exposure to each of the direct

pairs, when there was no transitive structure at all in the initial

response in CA1 (figure 4b), recurrence could support transi-

tive behaviour (figure 4c). Indeed, recurrence was necessary
for this behaviour, as the network without recurrence could

produce direct pair but not transitive output after one

exposure. The network can use rapidly memorized associ-

ations between the direct pairs in the TSP in addition to

recurrent dynamics to link from A to C through B. After recur-

rent activity settles, the transitive associate appears in ECin,

allowing all hidden layers to show apparent transitive pattern

similarity (figure 4b). CA1 notably showed stronger settled

similarity here than DG and CA3 because of its lower sparsity.

After full training, CA1 showed transitive similarity in the

initial response (figure 4a,d ). This representation was suffi-

cient to support transitive behaviour, as transitive associates

were produced in ECout even when recurrence was not

allowed (figure 4e). Allowing recurrence enhanced the simi-

larity structure throughout the network (figure 4a,d ) and

increased transitive behaviour (figure 4e).

These simulations suggest that both the TSP and MSP can

solve associative inference by the end of training, just using

different strategies: the TSP uses recurrence-based dynamics,

whereas the MSP uses static representational similarity.

Indeed, at the end of training, with a lesioned TSP, the network

produces the correct transitive associate with a probability of

0.99 on average (versus 0.01 for incorrect items, t499 ¼ 386.1,

p , 0.001). Lesioning the MSP—though a less clean manipu-

lation, as the MSP contributes to TSP communication with

EC—still results in production of the correct transitive associate

with probability 0.66 on average (versus 0.20 for incorrect

items, t499 ¼ 32.4, p , 0.001).
4. Discussion
Avoiding interference between related memories is often criti-

cal, but it can be just as important to notice their commonalities.

Our simulations suggest that there may be complementary

learning systems within the hippocampus that achieve these

competing goals—a microcosm of the broader CLS theory of

hippocampus and cortex. We found that DG and CA3, forming

the TSP to area CA1, represented distinct episodes but failed to

learn regularities across episodes. This reflects aggressive pat-

tern separation of similar experiences in these regions, caused

by sparse connectivity and high inhibition. By contrast, the

direct MSP pathway to CA1 learned regularities across experi-

ences. This is facilitated by overlapping representations in CA1

that result from full connectivity, lower inhibition, and a slower
learning rate. The MSP can function even when the TSP is fully

lesioned, which might provide an explanation for why infants,

who have undeveloped TSPs, are prodigious statistical lear-

ners. The overlapping representations in CA1 are akin to

‘nodal codings’ that have been observed there, with shared fea-

tures across events represented by overlapping populations of

neurons ([43,44], see also [45]). These representations have been

proposed to support relational memory and generalization

[46], consistent with our account.

The community structure and associative inference simu-

lations demonstrated that the model is also capable of learning

transitive associations. For community structure, CA1 learned

to represent the two boundary nodes in the same community

more similarly despite the fact that they were never experienced

together. This was possible because they shared overlapping sets

of associates—a principle we previously demonstrated in a

simpler neural network model of temporal community structure

[19]. More generally, our model predicts that static represen-

tational similarity will emerge in CA1 whenever there are

correlations in EC inputs and/or targets, and will reflect fre-

quencies of occurrence. These principles of learning mirror

those demonstrated in many prior neural network models

that use error-driven learning and overlapping, distributed

representations (e.g. [36,47], see also [48]).

Our simulations are consistent with findings from recent

human fMRI studies that used pattern similarity to assess

changes in representations across voxels in the hippocampus.

In a high-resolution study, we found that neural representations

of items that were consistently paired in a continuous sequence

became more similar in all subfields of the hippocampus [6],

analogous to the settled response in our pair structure simu-

lations. Similarly, in a study of temporal community structure,

we found that hippocampal representations of items from the

same community became more similar than those from different

communities [5]. Although this study was not performed at

high resolution, probabilistic segmentation suggested that the

effect was most reliable in CA1, consistent with the stronger

CA1 effects in our simulations. Finally, an associative inference

study found the strongest pattern similarity for transitively

associated pairs in CA1 [14]; direct pairs were presented only

once in this study, corresponding to our simulations using one

exposure (figure 4b).

Our model builds on two recent neural network models of

the hippocampus. The first is Ketz et al. [13], who developed a

technique for training the MSP online with error-driven learn-

ing. This allowed us to explore what kinds of representations

emerge during training in the MSP, which was not possible

in earlier versions of these models. Earlier models posited

that MSP connections did not show appreciable (or any) learn-

ing on the timescale of a single experiment [49], but there

is now evidence that the MSP does learn at this timescale

[50–52]. The second is REMERGE [21], which demonstrated

the utility of big-loop recurrence in transitive inference,

paired associate inference, and acquired equivalence. Such

recurrence plays three roles in our simulations: (i) it allows

the structure learned in CA1 to spread to DG and CA3; (ii) it

strengthens the similarity structure in CA1, due to the actual

presence of the pairmate representation in ECin; and

(iii) when pairwise co-occurrence is not sufficient to uncover

structure (i.e. community structure and associative inference),

big-loop recurrence enhances transitive relationships. Like

REMERGE, our model learns statistics while protecting

pattern-separated representations used for episodic memory.
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By contrast, however, our model outlines a role for static

representational similarity in the hippocampus.
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(a) Static representations versus recurrence
There is a debate in the hippocampal generalization literature

as to whether transitive associations are supported by

overlapping memory representations formed during encod-

ing or by recurrent activity online at retrieval [20,21,32,42].

The core question is whether generalizations are stored in

weights in the network or dynamically computed as

needed. Our account is a hybrid between REMERGE,

which depends entirely on recurrent dynamics, and models

that depend entirely on overlap in pair representations

[32,53]. In our model, recurrent dynamics play a dominant

role very early in training, before the MSP has a chance

to learn overlapping representations (this dependence on

number of exposures has been proposed before, [20]). After

sufficient exposure, however, both static representational

similarity and recurrence contribute.

There is a further distinction to be made in possible learn-

ing mechanisms within the static representations account.

The integrative encoding hypothesis [20] posits that viewing

BC triggers retrieval of AB through pattern completion in the

TSP. AB is then re-encoded in conjunction with the currently

viewed BC, leading to an integrated static representation of

ABC that can be used to support AC inference at test.

The learning occurring in our model’s MSP is distinct

from integrative encoding in several respects. First, whereas

integrative encoding can occur, in theory, after one presen-

tation of each pair, learning in the model’s MSP is slower

and requires multiple interleaved exposures (akin to cortex

in CLS; [1]). Second, learning in our model’s MSP, with suffi-

cient exposure, does not depend on or require the TSP,

as demonstrated by the TSP-lesion simulations. Third, learn-

ing in our model does not make use of overt reactivation of

transitive associates (electronic supplementary material,

figure S4). Relationships are uncovered implicitly as a result

of the fact that patterns with shared features tend to adopt

overlapping neural substrates in CA1. In other words, AB
and BC become associated not because BC brought AB to

mind, but simply because AB and BC share B. Speculatively,

the rapid and overt reinstatement required for integrative

encoding is perhaps more likely to occur in situations

where pair encoding is made an explicit task requirement,

as is the case in many associative inference but not statistical

learning studies. When and how integrative encoding might

occur, including whether it happens in the hippocampus

alone or requires interactions with medial prefrontal

cortex—an implicated area involved in processing event

structure [19,54–56]—is an important area for future work.

How can these mechanisms—recurrence, static repre-

sentations resulting from integrative encoding, and static

representations resulting from implicit, interleaved learn-

ing—be experimentally disentangled? In the fMRI literature,

increased hippocampal activity over training that correlates

with generalization performance has been taken as evidence

of integrative encoding in an acquired equivalence paradigm

[57], and higher hippocampal activity for transitive pairs

at test has been interpreted as flexible recombination of

direct pairs at retrieval in associative inference [58]. However,

REMERGE accounts for the acquired equivalence results

using only recurrent dynamics [21], and our model can
produce transitive associative inferences at test with static

representational similarity (figure 4d,e).

Use of these mechanisms can be more directly revealed

through lesion studies and by assessing fine-grained tem-

poral dynamics in electrophysiological experiments with

population recordings at different sites in the hippocampus

and EC. If static representations of temporal regularities are

acquired via interleaved learning (in the manner described

by our model), then we can make several predictions about

how these regularities will manifest after learning has taken

place. Over the course of one trial, a single item should

elicit a pattern of activity similar to that of its temporal associ-

ates first in CA1, then in deep layers of EC, then in superficial

layers of EC, and finally in DG and CA3. The model therefore

predicts that regularities will be eventually measureable in all

subfields, but in a very particular order, with CA1 emerging

first. Lesions to any portion of the TSP during or after learn-

ing should not affect behavioural evidence of statistical

learning (after sufficient exposure), nor should it affect rep-

resentations in CA1. Conversely, lesions to the MSP during

or after learning should weaken representational and behav-

ioural effects. Our model makes the counterintuitive

prediction that an MSP lesion should leave in place weak sen-

sitivity to pair structure early in learning, but that this ability

should then deteriorate over time.

If generalization is based purely on recurrence (in the

manner predicted by REMERGE, or by our model very early

in training), then representations of associated items should

arise during a trial only after activity has travelled from deep

to superficial layers of EC. Given that REMERGE depends

on strong pattern separation (though pattern separation and

subfields were not directly implemented), it would predict

deficits with a lesion to the TSP during or after learning.

If integrative encoding is used to learn temporal

regularities, then—as in our model—representations of

associated items should be present during the initial pass

through the hippocampus, prior to activity spreading from

deep to superficial layers of EC. Depending on the specific

implementation of the mechanism (which has yet to be

instantiated in a neural network model), the TSP may or

may not be required for retrieval after learning is complete.

However, in any implementation, the TSP would be required

for encoding the integrated representations, and so lesions to

the TSP should disrupt learning.

To summarize the two key predictions/differences: (i) if

the learner is relying on recurrence or integrative encoding,

TSP lesions should cause a learning deficit, whereas if the

learner is relying on the mechanism described in our model

(static representations acquired through interleaved learning),

TSP lesions should not impair learning. It follows that

infants, if using recurrence or integrative encoding, should

have difficulty with transitive associations, whereas they

should be able to learn adequately if using the mechanisms

in our model. The insensitivity to TSP lesions in our model

occurs after sufficient exposures to allow the MSP to learn;

very early on in learning (e.g. after one exposure to each

direct pair), our model depends on the TSP and recurrence,

as in REMERGE. (ii) If regularities are expressed using

static representations (via either the mechanism in our

model or integrative encoding), representations of associated

items should appear during the first pass through the hippo-

campal big loop, which will not be the case for recurrence.

Different sets of these mechanisms may turn out to be
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employed in different task contexts, at different periods over

the course of learning, and/or by different individuals.

Note that the above predictions about recurrence and inte-

grative encoding apply to paradigms involving transitive

associations. It is unclear whether these two mechanisms

could benefit pair structure learning, as they would memorize

transitions between pairs in addition to the pairs themselves

(as in our model’s TSP), causing recurrence/integration to

spread both within and across pairs. This limitation applies

to other statistical learning paradigms (e.g. with triplet struc-

ture), and more generally to any paradigm with many

repetitions that requires graded sensitivity to frequencies of

co-occurrence. Simulations of these learning mechanisms

applied directly to such paradigms will be useful.

(b) Anterior versus posterior hippocampal function
There is an anatomical gradient in the prominence of differ-

ent hippocampal subfields, in which regions CA1–3 are

relatively over-represented in anterior hippocampus and

DG is over-represented in posterior hippocampus [59]. Con-

sidering DG as an important contributor to pattern

separation in the TSP, this suggests there may be a relatively

more dominant role of the MSP in the anterior hippocampus.

Our model then makes the prediction that the anterior hippo-

campus should be more dominant in statistical learning. This

is consistent with human fMRI findings on the anterior hip-

pocampus: (i) it generally shows stronger effects in pair

structure and community structure paradigms [5,6]; (ii) it

plays a stronger role in integrating memories in the associat-

ive inference task [58,60]; (iii) it fully integrates across

elements in an event narrative analogue of the associative

inference task [61]; (iv) it is active during transitive inference

[62]; and (v) its activity varies with generalization perform-

ance in acquired equivalence [57].

This generalization of experiences across time in anterior

hippocampus may be related to the gradient of spatial rep-

resentations found in rodent hippocampus, where ventral

(anterior) place cells represent larger, more overlapping areas

of space compared to dorsal (posterior) ones [61,63,64]. Analo-

gous to our account, this varying spatial scale has been

proposed to allow the hippocampus to carry out the comp-

lementary tasks of generalizing and avoiding interference in

spatial memory [65]. Future extensions to our model could

explore this relationship to spatial processing. With spatial

information represented in EC [66], exposure to regularly

occurring configurations, as has been studied in spatial statisti-

cal learning [67] and contextual cueing paradigms [68], would

be expected to tap into the same learning mechanisms and

pathways as the temporal cases. The MSP might integrate

information more easily across larger areas of space, creating

larger place fields, which would correspond to those found

in anterior hippocampus.

(c) Temporal and sequence processing
There is substantial evidence from the rodent literature that

the MSP and CA1 play a special role in temporal processing,

including that: inhibition of the MSP leads to deficits in tem-

poral association memory [69], CA1 supports temporal order

memory [70–72], hippocampal place fields in CA1 expand to

represent earlier positions on a track [73], and CA1 can gen-

erate reliable sequential spiking patterns on its own [74].

There is also evidence from human fMRI that CA1 plays a
larger role than other hippocampal subfields in sequential

processing [19,75].

These findings are consistent with our account of the MSP’s

role in extracting temporal regularities across experiences.

They are surprising, however, given the large hippocampal

modelling literature that has focused on the role of recurrent

heteroassociative connections in CA3 in processing temporal

sequences [30,76–80]. (See [81], though, for discussion of the

consonant idea that less sparse representations in CA1 may

allow it to represent sequences better than CA3.) One possi-

bility is that greater reliance on the TSP versus MSP in

sequence processing may depend on the type of sequence. If

there is an obvious repeating sequence, the TSP may be best

suited to learning and reproducing it, whereas a noisier

sequence that requires integration across repetitions may

require the MSP. It is also possible that big-loop recurrence or

recurrence between EC and CA1 may play a similar compu-

tational role to recurrence within CA3. In our model (as in

REMERGE), input A retrieves associated item B, which then

travels through the big loop, such that the model first rep-

resents A, then additionally B. We tried training the model

on a longer sequence (data not reported here), ABCDEFGH,

and found that when given A at test, and with some synaptic

depression, it would use the big loop to sequentially retrieve

B (as A fades due to depression), then C (as B fades), then D,

etc. This indicates that big-loop recurrence can be sufficient to

produce robust sequential behaviour.
(d) Medial temporal lobe cortex and beyond
A related division of labour between episodic memory and stat-

istical learning in the medial temporal lobe (MTL) has previously

been proposed, with the hippocampus proper supporting episo-

dic memory and EC learning incrementally and coming to

represent co-occurring stimuli more similarly [82,83]. Empirical

support for this hippocampus-EC dissociation comes from

animal studies of incremental conditioning over days [84,85].

Although we did not model learning within EC, we expect

that it will learn overlapping representations as in CA1, just on

a slower timescale of days, not minutes. A slower learning rate

in MTL cortex would still be consistent with it supporting

rapid (even one-shot) familiarity for individual items [4,12],

which can be instantiated as subtle changes to the representation

of one item, as opposed to the more computationally difficult

binding across multiple items. It would also be consistent with

findings of rapid learning-related changes in representational

similarity in MTL and other cortical areas [6]. This is because

the hippocampus can reinstate an associated item in MTL simul-

taneously with processing of the current item in the same areas,

causing apparent representational similarity without local

learning (on this timescale).

One intriguing possibility is that there is a hierarchy of

learning rates, perhaps related to a hierarchy of temporal

window sizes for information accumulation [86], where the

TSP is fastest, followed by the MSP, then MTL cortex, then

cortical areas like the anterior temporal lobe that integrate

across different types of sensory information [87], and then

finally areas that support specific sensory functions. There

is substantial evidence that the MSP/CA1 operates on a

longer timescale than the TSP/CA3 [81,88–91], consistent

with our model’s relatively slower learning rate there. Further

down the hierarchy, after days of learning to associate pairs

of fractals, perirhinal cortex exhibits representational
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similarity for paired fractals [92–94]. Such ‘pair coding’ neur-

ons are found even further down in inferotemporal cortex

(IT), but their response appears about 350 ms later than in

perirhinal cortex [92], they are more prevalent in perirhinal

cortex [93], and IT pair coding is abolished by perirhinal

and entorhinal lesions [95]. For the rapid statistical learning

considered here—on the order of minutes to hours—the

learning rate of the MSP may be most suitable. The site of

local learning may then expand outward with increasing

exposure and opportunities for consolidation.

The idea that CA1 is intermediate in timescale between

CA3 and MTL cortex may also relate to its role as a stable

translator between CA3 and EC in episodic learning tasks.

It is important for those mappings to be stable in order

for CA1 to effectively communicate the details rapidly

stored in DG and CA3 back to EC. However, this stability

need only last while in a particular context (as opposed to

over the lifespan, [49]).

These ideas also speak to a debate in the statistical learning

literature regarding whether statistical learning is domain gen-

eral or modality specific [96,97]. As argued above, statistical

learning (in conventional tasks) occurs over a rapid timescale

that is well-matched to the learning rate of the hippocampus

and MSP specifically, but not to that of modality-specific

sensory cortex. Nevertheless, processing dynamics, represen-

tational properties, and individual differences in these areas

certainly shape the input to the hippocampus. Moreover,

although the hippocampus is important for statistical learning

within multiple modalities [4], it may use at least partially non-

overlapping neural substrates to process inputs from each

modality [98], such that the representations are not fully

abstracted away from modality. Finally, as noted above for

MTL cortex and IT, evidence of statistical learning could

appear in modality-specific areas on a rapid timescale even

without local learning, as a result of feedback from the hippo-

campus (e.g. input from visual cortex of image A allows the

MSP to retrieve image B on ECout and reinstate it back in

visual cortex, likewise for statistical learning of a pair of

sounds AB and auditory cortex). In sum, we propose that the

hippocampus is a domain-general statistical learner con-

strained by and operating over specific modalities, and that it

can influence corresponding modality-specific areas via rein-

statement (which can themselves exhibit learning over a

longer timescale).

(e) Conclusions and open questions
Where does this work leave us with respect to the original

CLS theory, which posits that the hippocampus stores new

information and slowly teaches it to cortex to prevent cata-

strophic interference [1]? We think that this fundamental

principle remains unchallenged: it is still critical to use a sep-

arate memory store to protect long-term knowledge from

novel, potentially interfering information, and we still think

the hippocampus plays this role. The modification to the

CLS framework that we propose is that both novel episodic

and novel statistical information are quickly learned in the

hippocampus—indeed, both types of information could

interfere with cortical representations if learned directly in

cortex. However, it is not the entire hippocampus that stores

pattern-separated representations for distinct recent experi-

ences, but rather this is the province of the TSP. DG and

CA3 are the areas that truly instantiate the hippocampal
learning properties as presented in CLS. The MSP, in contrast,

specializes in extracting regularities across recent experiences.

Indeed, CA1 is the most cortex-like area of the hippocampus,

with more overlapping representations and a slower learning

rate (though still sparser and faster than cortex)—precisely

the properties that encourage neural networks to efficiently

generalize across experiences.

One open question is whether the analogy to CLS conso-

lidation might hold within this microcosm: on this short

timescale, does the TSP train the MSP offline to help avoid

catastrophic interference in the MSP? Another important

question is how statistical representations in the MSP affect

the process of consolidating information to cortex. CA1 neur-

ons replay generalized trajectories in a maze, not just those

directly experienced [99], raising the possibility that the

representations in CA1 allow a more sophisticated and poten-

tially more useful transfer of information to cortex (for related

discussion and simulations, see [21]). Statistical learning in

the hippocampus may also encourage replay of the most stat-

istically reliable experiences, as opposed to indiscriminate

replay of all experiences.

Future work could also explore whether the two pathways

can be controlled depending on the type of past information

that is currently relevant, or anticipated to be relevant in the

future. For example, when trying to remember the specifics

of a recent experience that overlaps with other recent experi-

ences, perhaps activity in the MSP can be strategically

suppressed. Future simulations could assess interactions

between the pathways in the context of paradigms in which

both episodic details and statistical information are salient or

relevant to behaviour, such as experiments that demonstrate

sampling of trial-unique information after learning statistical

information across trials [100].

Finally, there have been recent findings that represen-

tations of statistically associated items can differentiate from

one another (i.e. their neural patterns become less similar)

in some situations [6,60,101], which may be due to compe-

tition induced among associated items. Future work will

explore whether incorporating competition-dependent learn-

ing mechanisms [102–104] can allow the model to account

for these findings.

Though there are many questions that remain to be

addressed, we hope the model provides a useful step on

the path towards understanding how the hippocampus sup-

ports memory for both specific episodes and the regularities

that hold across them.
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