# Hold that thought! When mental contexts survive interruptions to bind memories



### Sarah DuBrow, Yael Niv & Kenneth A Norman

<sup>1</sup>Princeton Neuroscience Institute <sup>2</sup> Department of Psychology, Princeton University



### Introduction

Changes in category and task create separation in memory. (e.g., DuBrow & Davachi, 2013; Polyn et al, 2009).

However, lingering representations can persist across changes to contextualize memories (Chan et al, 2017).

Thus, tracking context persistence may help us understand when memories become segmented.

#### Questions:

Can task contexts persist across short interruptions?

Does conflict modulate persistence and segmentation?

How can we use neural decoding to track multiple contexts simultaneously and independently?

#### 





Priming effects indicate binding can occur across switches when conflict is low but not high.

#### \* p < .05 ~ p < .10

### Experimental logic and design



fMRI study is within-subjects design with blocked study-test rounds: 4 per condition, counterbalanced start.

## fMRI approach to track contexts independently





#### Orthogonalizing scene and face attention



### **fMRI Predictions**

## 1. The dominant task context will persist across brief interruptions to bind memories:

Scene evidence during face interruption will correlate with subsequent recognition priming.

Hippocampal and prefrontal regions may mediate binding across interruptions (e.g., DuBrow & Davachi, 2015)

## 2. High conflict interruptions will induce competition between contexts:

Scene evidence will be suppressed for high-conflict versus low-conflict face trials despite more perceptual scene information.

High-conflict blocks may show greater anti-correlation between independent face and scene classifiers that may be mediated by interactions between the ACC and category-selective regions.

This approach may help address how we can track multiple concurrent trains of thought in multitasking environments.

#### References

Chan, Applegate, Morton, Polyn & Norman (2017). Lingering representations of stimuli influence recall organization. Neuropsychologia.

DuBrow & Davachi (2013). The influence of context boundaries on memory for the sequential order of events. JEP General.

DuBrow & Davachi (2016). Temporal binding within and across events. NBL&M. Polyn, Norman & Kahana (2009). Task Context and Organization in free recall. Neuropsychologia.

Supported by The John Templeton Foundation