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Dissociable Effects of Surprising Rewards on Learning and Memory

Nina Rouhani, Kenneth A. Norman, and Yael Niv
Princeton University

Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning.
How do such errors in prediction interact with memory for the rewarding episode? Existing findings point
to both cooperative and competitive interactions between learning and memory mechanisms. Here, we
investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors,
would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context.
Experiment 1 showed that recognition was better for items associated with larger absolute prediction
errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards.
Interestingly we did not find a relationship between learning rate for reward and recognition-memory
accuracy for items, suggesting that these two effects of prediction errors were caused by separate
underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed
stronger memory demands and allowed for more learning. We also showed improved source and
sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty
of reward learning in the risk environments, again replicating the previous results. Moreover, this control
revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction
errors. In summary, our results show that prediction errors boost both episodic item memory and
incremental reward learning, but the two effects are likely mediated by distinct underlying systems.
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If you receive a surprising reward, would you remember the
event better or worse than if that same reward were expected? And
what if it were a surprising punishment? Surprising rewards or
punishments cause “prediction errors” that are important for learn-
ing which outcomes to expect in the future, but it is unclear how
these prediction errors affect episodic memory for the details of the
surprising event. Theories of learning suggest that outcomes are
integrated across experiences, yielding an average expected value
for the rewarding source. Alternatively, we could use distinct
episodic memories of past events and their outcomes to help guide
us toward rewarding experiences and away from punishing ones.
Incremental learning and episodic memory systems can collabo-
rate during decision making, for example, when both the expected
value of an option and a distinct memory of a previously experi-
enced outcome influence a decision (Biele, Erev, & Ert, 2009;
Duncan & Shohamy, 2016). The two systems can also compete for

processing resources: Compromised feedback-based learning has
been associated with enhanced episodic memory, both behavior-
ally and neurally (Foerde, Braun, & Shohamy, 2013; Wimmer,
Braun, Daw, & Shohamy, 2014). Here, we studied the nature of the
interaction between incremental learning and episodic memory by
investigating the role of reward-prediction errors—rapid and tran-
sient reinforcement signals that track the difference between actual
and expected outcomes—in the formation of episodic memory for
rewarding events.

Reward-prediction errors play a well-established role in updat-
ing stored information about the values of different choices, and
are known to modulate dopamine release. When a reward is better
than expected, there is an increase in the firing of dopamine
neurons, and conversely, when the reward is worse than expected,
there is a dip in dopaminergic firing (Schultz & Dickinson, 2000;
Schultz, Dayan, & Montague, 1997). Dopamine, in turn, modu-
lates plasticity in the hippocampus, a key structure for episodic
memory (Lisman & Grace, 2005). This dopaminergic link there-
fore provides a potential neurobiological mechanism for reward-
prediction errors to affect episodic memory. However, there are
several ways by which reward-prediction errors could potentially
influence episodic memory. First, if memory formation is affected
by this signed prediction error, then we would expect an asym-
metric effect on memory, such that a positive prediction error
(leading to an increase in dopaminergic firing) would improve
memory whereas a negative prediction error (leading to a decrease
in dopaminergic firing) would worsen it.

A second possibility is that the magnitude of the prediction error
could influence episodic memory regardless of the sign of the
error, enhancing memory for events that are either much better or
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much worse than expected. Outside of reward learning, surprising
feedback has been linked to better memory for both the content
and source of feedback events in studies investigating the “hyper-
correction” effect, in which high-confidence errors are more likely
to be corrected and remembered (Butterfield & Mangels, 2003;
Butterfield & Metcalfe, 2001; Fazio & Marsh, 2009, 2010). The
same memory benefit for high-confidence errors has also been
shown for low-confidence correct feedback, and one can envision
both high-confidence errors and low-confidence correct trials as
generating a large (unsigned) prediction error. These putative
“high prediction-error events” have also been shown to modulate
attention, as measured by impaired performance on a secondary
task; the degree of this attentional capture, in turn, predicts sub-
sequent memory enhancement for the feedback content (Butter-
field & Metcalfe, 2006).

The effects of unsigned prediction errors are thought to be
mediated by the locus-coeruleus–norepinephrine (LC-NE) system,
which demonstrates a transient response to unexpected changes in
stimulus–reinforcement contingencies in both reward and fear
learning (that is, regardless of sign; for a review, see Sara, 2009),
and modulates increases in learning rate, that is, the extent to
which a learner updates his or her values following large unsigned
prediction errors (Behrens, Woolrich, Walton, & Rushworth,
2007; McGuire, Nassar, Gold, & Kable, 2014; Nassar et al., 2012;
Pearce & Hall, 1980). Notably, recent evidence also indicates that
the LC co-releases dopamine with norepinephrine, giving rise to
dopamine-dependent plasticity in the hippocampus (Kempadoo,
Mosharov, Choi, Sulzer, & Kandel, 2016; Takeuchi et al., 2016).
This latter pathway thereby provides a mechanism by which un-
signed prediction errors could affect episodic memory by modu-
lating hippocampal plasticity.

In the following experiments, we therefore tested whether
signed or unsigned prediction errors influence learning rate and
episodic memory, and whether these two effects are correlated.
Correlated effects on learning of values and memory for events
would suggest a common mechanism underlying both effects,
whereas two uncorrelated effects would be consistent with sepa-
rate underlying mechanisms.

We also wanted to measure the effect of risk context (i.e.,
whether unsigned prediction errors were large or small, on aver-
age, in a particular environment) on episodic memory. Previous
work on the effects of risk context show that dopamine signals
scale to the reward variance of the learning environment (Tobler,
Fiorillo, & Schultz, 2005), allowing for greater sensitivity to
prediction errors in lower variance contexts. Moreover, behavioral
learning rate and blood-oxygen-level dependent (BOLD) re-
sponses in the dopaminergic midbrain and striatum reflect this
adaptation, with higher learning rates and increased striatal re-
sponse to prediction errors when the reward variance is lower
(Diederen, Spencer, Vestergaard, Fletcher, & Schultz, 2016). We
therefore expected higher learning rates in a low-risk context, but
it was unclear whether this effect would interact with episodic
memory. If anything, for memory, we expected opposite effects,
such that a high-risk context would induce better episodic memory,
as salient feedback (such as experiencing high-magnitude predic-
tion errors) is thought to increase autonomic arousal and encoding
of those events (Clewett, Schoeke, & Mather, 2014). The mne-
monic effects of higher magnitude prediction errors may also “spill
over” to surrounding items, boosting memory for those items as

well, again predicting better memory for events experienced in the
high-risk context (Duncan, Sadanand, & Davachi, 2012; Mather,
Clewett, Sakaki, & Harley, 2015).

To investigate the effect of prediction errors and risk context on
the structure of memory, we asked participants to learn by trial and
error which of two types of images, indoor or outdoor scenes, led
to larger rewards. Trial-unique indoor and outdoor images were
presented in two different contexts, or “rooms,” with each room
associated with a different degree of outcome variance. The aver-
age values of the scene categories in the two rooms were matched.
Participants were instructed to learn the average (expected) value
of each type of image (indoor or outdoor scenes), given the
variable individual outcomes experienced for each scene, as is
typically done in reinforcement-learning tasks (e.g., O’Doherty,
Dayan, Friston, Critchley, & Dolan, 2003; Wimmer et al., 2014).

Specifically, we asked participants to explicitly estimate, on
each trial, the average value of the category of the current scene.
The deviation between this estimate and the outcome on that trial
defined the trial-specific subjective prediction error. These predic-
tion errors were then used to calculate trial-by-trial learning rates
for the average values of the categories, as well as to predict future
memory for the specific scenes presented on each trial. At a later
stage, memory for the individual scenes was assessed through
recognition memory (“item” memory), identification of the room
the item belonged to (“source,” or context, memory; Experiments
2–3), and the ordering of a pair of items (“sequence” memory).
Given that both category-value learning and individual-scene
memory were hypothesized to depend on the same prediction
errors, we also characterized the relationship between learning
about the average rewards in the task and episodic memory for the
individual rewarding events.

Experiment 1

In Experiment 1, we assessed whether reward-prediction errors
interact with episodic memory for rewarding episodes. Participants
learned the average reward values of images from two categories
(indoor or outdoor scenes) in two learning contexts (rooms). The
two learning contexts had the same mean reward, but different
degrees of reward variance (risk), such that the rewards associated
with scenes in the “high-risk room” gave rise to higher absolute
prediction errors than in the “low-risk room.” We then assessed
participants’ recognition for the different scenes in a surprise
memory test to determine how the reward-prediction errors asso-
ciated with each episode affected memory for that particular scene.

Method

Participants. Two hundred participants initiated an online
task using Amazon Mechanical Turk (MTurk), and 174 completed
the task. We obtained informed consent online, and participants
had to correctly answer questions checking for their understanding
of the instructions before proceeding (see supplementary material);
procedures were approved by Princeton University’s Institutional
Review Board. Participants were excluded if they (a) had a mem-
ory score of less than .5 (A=: sensitivity index in signal detection;
Pollack & Norman, 1964) based on their hit rate and false-alarm
rate for item-recognition memory, or (b) missed more than three
trials. These criteria led to the exclusion of 10 participants, leading
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to a final sample of 164 participants. Although we do not have
demographic information for the mTurk workers who completed
these experiments, an online demographic tracker reports that
during the time we collected data, the samples were approximately
55% female, 40% were born before 1980, 40% were born between
1980 and 1990, and 20% were born between 1990 and 1999
(Difallah, Catasta, Demartini, Ipeirotis, & Cudré-Mauroux, 2015;
Ipeirotis, 2010).

Procedure. Participants learned by trial and error the average
value of images from two categories (indoor and outdoor scenes)
in two rooms defined by different background colors (see Figure
1). In each room, one type of scene was worth 40¢ on average
(low-value category) and the other worth 60¢ (high-value cate-
gory). The average values of the categories were matched across
rooms, but the reward variance of the high-risk room was more
than double that of the low-risk room (high-risk ! " 34.25,
low-risk ! " 15.49). The order of the rooms (high-risk and
low-risk) was randomized across participants. In an instruction
phase, participants were explicitly told (through written instruc-
tions; see supplementary material) that in each room, one scene
category was worth more than the other (the “winning” category)
and were asked to indicate the winner after viewing all images in
a room. They were not told the reward distributions of the rooms,
nor that the rooms would have different levels of variance. In

addition, to motivate participants to pay attention to individual
scenes and their outcomes, participants were told that later in the
experiment they would have the opportunity to choose between
these same scenes and receive the rewards associated with them
according to their choices.

After the two learning blocks (one high-risk and one low-risk),
participants completed a risk-attitude questionnaire (Domain-
Specific Risk Taking scale [DOSPERT]; Weber, Blais, & Betz,
2002) that served to create a 5–10 min delay between learning and
memory tests. Participants then completed a surprise item-
recognition task (i.e., participants were never told that their mem-
ory for scenes would be tested, apart from instructions about the
choice task, as detailed above), as well as a sequence-memory task.
After the memory tests, participants made choices between previ-
ously seen images.

Learning. On each trial, participants were shown a trial-
unique image (either an indoor or outdoor scene) for 2 s.
Participants then had up to 5 s to estimate how much that type
of scene was worth, on average, in that room (from 1 to 100¢).
In other words, participants were asked to provide their esti-
mates of the average, or expected, value of the scene category
based on the previous (variable) outcomes they had experienced
from that scene category within the room. The scene was then
presented again for 3 s, along with its associated reward (see

A

B

C

cue

LEARNING
room 1

LEARNING
room 2

MEMORY

CHOICE

2 s

estimate
please estimate
the value of this 

type of scene 
(indoor or outdoor) 

from 1 to 100 ¢

Submit

max 5 s

reward

100 ¢ 

3 s

A

sequence

press A or B

B

recognition
source

Press 1 or 2 to choose

1 2

DELAY 
(risk questionnaire)

Figure 1. Task design. A: Example learning trial. On each trial, participants were shown an image (cue), and
were asked to estimate how much, on average, that type of scene (indoor or outdoor) was worth (estimate). They
then saw the image again with a monetary outcome (reward). Each image appeared on one trial only. B: Memory
tests. Participants completed item-recognition, source- (Experiments 2, 3), and sequence-memory tasks. C:
Choice task. Participants chose between previously seen images that were matched for reward outcome, risk
context, and/or scene-category value. See the online article for the color version of this figure.
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Figure 1A). In the instructions (see supplementary material),
participants had been told that although trial-unique images can
take on different rewards, each scene category had a stable
mean reward, and on average, one scene category was worth
more than the other. Note that participants were not asked to
estimate the exact outcome they would receive on that trial, but
instead were estimating the average expected reward from that
scene category. Accordingly, participants had also been told
that their payment was not contingent on how accurate their
guesses were relative to the reward on that trial. Instead, their
payment was solely determined by the rewards they received, to
ensure that rewards were meaningful for the participant. This
task structure was chosen to ensure that participants would
continue to experience prediction errors on each trial (i.e., for
individual scenes) even after correctly estimating the expected
values of the categories, as is commonly done in reinforcement-
learning tasks (e.g., Niv, Edlund, Dayan, & O’Doherty, 2012).

There were 16 trials in each room (eight outdoor and eight
indoor). Rewards were 20¢, 40¢, 80¢, 100¢ (twice each) for the
high-risk– high-value category, 0¢, 20¢, 60¢, 80¢ for the high-
risk–low-value category, 45¢, 55¢, 65¢, 75¢ for the low-risk–
high-value category and 25¢, 35¢, 45¢, 55¢ for the low-risk–
low-value category. All participants experienced the same
sequence of rewards within each room, with the order of the
rooms randomized.

Memory. After completing the risk questionnaire, participants
were presented with a surprise recognition-memory test in which
they were asked whether different scenes were old or new (see
Figure 1), as well as their confidence for that memory judgment
(from 1, guessing, to 4, completely certain). There were 32 test
trials, including 16 old images (eight from each room) and 16 foils.
Participants were then asked to sequence eight pairs of previously
seen scenes (which were not included in the recognition-memory
test) by answering “Which did you see first?” (see Figure 1) and by
estimating how many trials apart the images had been from each
other. Each pair belonged to either the low- (four pairs) or the
high-risk room (four pairs).

Choice. In the last phase of the experiment, to verify that
participants had encoded and remembered the individual outcomes
associated with different scenes, participants were asked to choose
between pairs of previously seen scenes for a chance to receive
their associated reward again (see Figure 1C). The pairs varied in
either belonging to the same room or different rooms and some
were matched for reward and/or average scene value to test for the
effects of factors such as risk context on choice preference. The
choices were presented without feedback.

Statistical analysis. Analyses were conducted using paired t
tests, repeated-measures analyses of variance (ANOVAs),
and generalized linear mixed-effects models (using lme4 pack-
age in R; Bates et al., 2015). All results reported below (t tests
and ANOVAs) were confirmed using linear or generalized
mixed-effects models, treating participant as a random effect
for both the intercept and slope of the fixed effect in question.
We note that in all experiments, our results held when control-
ling for the between-subjects variable of room order (for brev-
ity, we only explicitly report these results in Experiment 1; see
below).

Results

Learning. Participants learned the average values of the high-
and low-value categories better in the low-risk than in the high-risk
room, as assessed by the deviation of their value estimates from the
true averages of the scene categories, t(163) " 14.52, p # .001;
Figure 3A. We then calculated, for every scene, the prediction
error (PEt) associated with that scene by subtracting participants’
value estimates (Vt) from the reward outcome they observed (Rt;
see Figure 2), which showed that, as we had planned, there were
more high-magnitude prediction errors in the high-risk room than
in the low-risk room, t(163) " 36.77, p # .001, in a within-subject
comparison of average absolute prediction errors between the two
rooms; see Figure 3B.

Moreover, there was an interaction between risk and scene
category, such that participants overestimated the value of the
low-value scene category (resulting in negative prediction errors,
on average) and underestimated the value of the high-value scene
category (resulting in positive prediction errors, on average) to a
greater extent in the high-risk room than in the low-risk room, F(1,
163) " 141.2, p # .001, in a within-subject interaction of the
effects of room and scene category on the average signed predic-
tion error, see Figure 3C. This demonstrates more difficulty in
separating the values of the categories in the high-risk room, and
is consistent with previous findings showing that when people
estimate the means of two largely overlapping distributions, they
tend to average across the two distributions, thereby grouping them
into one category instead of separating them into two (Gershman
& Niv, 2013). Despite greater difficulty in separating the values of
the high- and low-value categories within the high-risk room, most
participants correctly guessed the “winner,” or the high-value
scene category, within both the high-risk (88%) and the low-risk
(89%) rooms.

Memory by risk and prediction error. We found that items
within the high-risk room were recognized better than items within
the low-risk room (z " 2.37, p " .02, $ " 0.31; see Figure 4A).
To test the effect of reward-prediction errors on item-recognition
memory, we ran two separate mixed-effects logistic regression
models of memory accuracy, one testing for the effect of signed
and the other the effect of unsigned (absolute) prediction errors on
recognition memory. Both models also included a risk-level re-
gressor to test for the effects of risk and prediction error separately,
and treated participants as a random effect. We did not find signed
prediction errors to influence recognition memory beyond the
effect of risk (signed PEt), z " 0.71, p " ns, $ " 0.04; risk z "
2.29, p " .02, $ " 0.30. Instead, we found that larger prediction
errors enhanced memory regardless of the sign of the prediction
error, which also explained the modulation of memory by risk,
absolute prediction error (|PEt|), z " 3.36, p # .001, $ " 0.23; risk
z " 0.9, p " ns, $ " 0.10 (see Figure 4B).

We ran two subsequent models testing for confounds, one
including the effect of value estimates and the other the actual
reward outcomes associated with the items, along with the effect of
absolute prediction errors. |PEt| had a significant effect on recog-
nition memory when controlling for reward outcome (|PEt|, z "
3.94, p # .001, $ " 0.26; Rt, z " 0.45, p " ns, $ " 0.02) and value
estimates (|PEt|, z " 3.93, p # .001, $ " 0.26; Vt, z " %0.09, p "
ns, $ " %0.005). This effect also held when modeling recognition
memory for items in the high- and low-risk rooms separately
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(high-risk, z " 1.90, p " .05, $ " 0.18; low-risk, z " 2.17, p "
.03, $ " 0.24), and in a model of the effects of absolute prediction
errors on recognition memory that controlled for room order (|PEt|,
z " 3.90, p # .001, $ " 0.25; room order, z " 1.95, p " .05, $ "
0.33). Although room order itself did affect recognition memory
(participants who experienced the low-risk room first showed
better memory accuracy overall), all of our main findings, includ-
ing learning rate, (see below) held when controlling for this effect.

Reward-prediction errors therefore affected recognition mem-
ory, such that larger deviations from one’s predictions, in any
direction, enhanced memory for items. Finally, we tested for the
effect of risk on sequence memory (i.e., the correct ordering of two
images seen during learning) and found no difference in sequence
memory between pairs of images seen in the high and low-risk
rooms, z " 0.11, p " ns, $ " 0.02.

Learning rate by risk and prediction error. We also exam-
ined the effects of risk and prediction errors on the reward learning
process itself, for which we calculated a trial-by-trial learning rate,
&t, as the proportion of the current prediction error, PEt " Rt % Vt,
that was applied to update the value for the next encounter of the
same type of scene, Vt'1 (see Figure 2 for a schematic representing
the learning-rate calculation). That is, we derived the trial-specific
learning rate directly from the standard reinforcement-learning
update equation, Vt'1 " Vt ' &t (Rt % Vt), as

!t "
Vt#1 $ Vt

Rt $ Vt
.

In agreement with recent findings (e.g., Diederen et al., 2016),
we found that average learning rate was higher in the low-risk
room than in the high-risk room, within-subjects test, t(163) "

3.37, p # .001 (see Figure 5A). Moreover, higher absolute pre-
diction errors increased trial-by-trial learning rates above and
beyond the effect of risk, mixed-effects linear model of |PEt|, t "
3.30, p " .001, $ " 0.07; risk, t " 4.67, p # .001, $ " 0.16 (see
Figure 5B). We did not find that participant room order influenced
learning rate, t " 0.31, p " ns, $ " %0.03. These results show that
larger absolute prediction errors enhance value updating, and fur-
ther, that learning rates adapt to the reward variance, such that
there is greater sensitivity to prediction errors in a lower risk
environment.

Next we ran a mixed-effects regression model to test whether
trial-by-trial learning rates predicted recognition memory for
scenes at test. Controlling for absolute prediction error, we did not
find that learning rate on trial t predicted memory on that same
trial, &t, z " 0.85, p " ns, $ " 0.08; |PEt|, z " 3.42, p # .001, $ "
0.20, nor on the subsequent trial, (effect of &t%1 on recognition
memory for the scene on trial t, z " 0.56, p " ns, $ " 0.05; |PEt|,
z " 3.06, p " .002, $ " 0.19, where t enumerates over trials
within a room). This demonstrates that increases in learning rate
were not correlated with better (or worse) memory, even though
both learning rate and recognition memory were enhanced by
larger prediction errors.

Choice by reward and value difference. Finally, in a ma-
nipulation test, participants were asked to make choices between
pairs of previously viewed scenes. Choices between scenes with
different reward outcomes served to test whether participants en-
coded the rewards associated with the images. Participants chose
the image associated with the larger outcome more often (mixed-
effects logistic regression model predicting choice based on out-
come, z " 6.40, p # .001, $ " 0.54), suggesting that they did

cue

2 s

estimate
please estimate
the value of this 

type of scene 
(indoor or outdoor) 

from 1 to 100 ¢

Submit

max 5 s

reward

100 ¢ 

3 s

cue

2 s

estimate
please estimate
the value of this 

type of scene 
(indoor or outdoor) 

from 1 to 100 ¢

Submit

max 5 s

(Vt)

(Vt+1)

Prediction Error  
PEt = Rt t

Learning Rate 
t =  Vt+1 t

t 

(Rt)

Figure 2. Schematic of prediction-error and learning-rate (&) calculation for two consecutive trials involving
the same scene category in the learning phase of the experiment. Based on the learning equation, Vt'1 " Vt '
&t ( PEt, we calculated the trial-by-trial learning rate as (Vt'1 % Vt)/PEt. Note that all components of this
equation are measured explicitly: Vt and Vt'1 are two consecutive estimates of the value of a scene from a single
category (e.g., outdoor scenes), and the prediction error on trial t is the difference between the reward given on
that trial, and the participants’ estimate of the value of scene on the same trial. We assumed here that separate
values were learned and updated for each of the scene categories. See the online article for the color version of
this figure.
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indeed encode and remember the rewards associated with the
scenes.

Some choices were between items that were associated with
the same outcome feedback. Here we sought to test whether
features of the environment, such as the risk context, biased
participants away from indifference. We did not find risk level,
whether the scene was from the low-rewarding or high-

rewarding category, or the difference in absolute prediction
error between the images, to additionally influence choice pref-
erence. Instead, we found that participants were more likely to
choose the scene for which they had initially guessed a higher
value (z " 3.74, p # .001, $ " 0.01). In addition, we found that
even when the two options had led to different reward out-
comes, the difference in initial value estimates for the scene was

Figure 3. Experiment 1, learning results. A: Average estimates for the high- and low-value categories as a
function of trial number for the high- and low-risk rooms. Participants learned better in the low-risk room,
indicated by the proximity of their guesses to the true values of the scenes (dashed horizontal lines). Cent values
represent the outcome participants received on that trial (after entering their value estimate). B: Density plot of
prediction errors (PEt) in each room. There were more high-magnitude prediction errors in the high-risk than the
low-risk room. C: There was an interaction for positive and negative prediction errors between risk context and
category value, such that participants overestimated the value of the low-value category and underestimated the
value of the high-value category to a greater extent in the high-risk room. Error bars represent SEM. See the
online article for the color version of this figure.

Figure 4. Experiment 1, recognition-memory results. A: Recognition memory was better for items within the
high-risk room. B: There was better recognition memory for items associated with a higher absolute prediction
error. Item memory was binned by the quartile values of prediction errors within each risk room. Each dot
represents the average value within that quartile. Error bars represent SEM. See the online article for the color
version of this figure.
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a significant predictor of choice, above and beyond the differ-
ence in actual reward outcome (value-estimate difference, z "
2.27, p " .02, $ " 0.16; reward difference, z " 7.25, p # .001,
$ " 0.52), which suggests that participants remembered not
only the outcomes for different scenes, but also their initial
estimates.

Discussion

In Experiment 1, we showed that the greater the magnitude of
the prediction error experienced during value learning, the more
likely participants were to recognize items associated with those
prediction errors. We also demonstrated that both risk context and
absolute prediction errors influenced the extent to which people
updated values for the scene categories, that is, their item-by-item
learning rate fluctuated according to prediction errors and was
influenced by context. In particular, learning rate was higher in the
low-risk environment, suggesting greater sensitivity to prediction
errors when the variance of the environment was lower. Further, in
both contexts, higher absolute prediction errors increased learning
rate. Although absolute prediction errors enhanced both recogni-
tion memory and learning rate, we did not find learning rate to
predict recognition memory, suggesting that absolute prediction
errors affect learning and memory through distinct mechanisms.

Experiment 2

In Experiment 2, we allowed for more learning in both rooms,
which imposed stronger memory demands. We also tested for
other types of episodic memory. Notably, different from standard
reinforcement-learning paradigms, Experiment 1 involved only 16
trials of learning in each context, eight for each category. The
initial phase of learning, which we were effectively testing, is
characterized by increased prediction errors and uncertainty rela-
tive to later learning, which might affect the relationship between
prediction errors and episodic memory. In addition, participants in
Experiment 1 all experienced the same reward sequence, which
inadvertently introduced regularities in the learning curves that
could have also influenced initial learning and memory results.
Finally, in this relatively short experiment, average recognition-
memory performance was near ceiling (A=" 0.90). In Experiment

2, we therefore sought to replicate the results of Experiment 1
while increasing the number of learning and memory trials and
randomizing reward sequence. With more trials, we were also able
to test for sequence memory for items that were presented further
apart in time, and we included a measure of source memory (i.e.,
which room the item belonged to)—a marker of episodic
memory—for the context of the probed item.

Method

Participants. Two hundred participants initiated an online
task run on Amazon MTurk, and 148 completed the task. Follow-
ing the same protocol as in Experiment 1, 12 participants were
excluded from the analysis leading to a final sample of 136
participants.

Procedure. The procedure was the same as in Experiment 1,
but with some changes to learning, memory and choice. As in
Experiment 1, rewards had a mean of 60¢ for the high-value
category and 40¢ for the low-value category (high-risk–high-value
scenes: 20¢, 40¢, 60¢, 80¢, 100¢; high-risk–low-value scenes: 0¢,
20¢, 40¢, 60¢, 80¢; low-risk–high-value scenes: 40¢, 50¢, 60¢,
70¢, 80¢; low-risk–low-value scenes: 20¢, 30¢, 40¢, 50¢, 60¢).
However, we increased the number of learning trials from 16 to 30
trials per room, and we pseudorandomized the reward sequence
such that the rewards were drawn at random and sampled three
times without replacement.

During the item-memory test, we also asked participants to
indicate whether items identified as “old” belonged to the first or
second room (see Figure 1B), to measure source memory. In
addition, given that sequence memory improves with greater dis-
tance between events (DuBrow & Davachi, 2013), here we asked
participants to order items that were as far as 13–14 trials apart, in
contrast to the maximum of eight trials apart in Experiment 1.
Finally, satisfied by the manipulation check in the choice tasks in
Experiment 1, we asked participants to choose only between pairs
of scenes matched for reward outcome.

Results

Learning. As in Experiment 1, participants learned better in
the low-risk than in the high-risk room assessed by the average

Figure 5. Experiment 1, learning-rate results. A: Learning rate was higher in the low-risk context. Average
learning rate plotted by risk context and category value. B: Both absolute prediction errors and a low-risk context
increased learning rate. Learning rates were binned by prediction errors that occurred on the same trial. Each dot
represents the average prediction error within the binned range. Error bars represent SEM. See the online article
for the color version of this figure.
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deviation of participants’ value estimates from the true means of
the category values, t(135) " 13.11, p # .001; see Figure 6A. They
experienced larger absolute prediction errors in the high-risk room,
t(135) " 39.65, p # .001; Figure 6B, and again, there was an
interaction between risk and scene-category value, such that in the
high-risk room, participants overestimated the value of the low-
value scene category and underestimated the value of the high-
value scene category to a greater extent than in the low-risk room,
F(1, 135) " 77.5, p # .001; interaction of the effects of room and
category on average prediction error experienced (see Figure 6C).
Again, participants guessed the high-value scene category at the
end of each room equally well in the high-risk (90%) and low-risk
(89%) rooms.

Memory by risk and prediction error. By increasing the
number of learning and memory trials, we significantly reduced
average recognition-memory performance from Experiment 1,
A= " 0.86, t(275.23) " 3.04, p " .003, when comparing overall
memory performance between Experiment 1 and 2. We neverthe-
less replicated the main results of Experiment 1: Items from the
high-risk room were better recognized than items from the low-
risk room (z " 2.51, p " .01, $ " 0.19) when testing for the effect
of risk on item-recognition memory (see Figure 7A). In a separate
model, higher absolute prediction errors enhanced recognition
memory for scenes, while again explaining the effect of risk (|PEt|,
z " 3.44, p # .001, $ " 0.16; risk, z " 1.76, p " .08, $ " 0.14;
see Figure 7B). Like in Experiment 1, in subsequent models testing
for potential confounds, this effect was significant when control-

ling for the outcomes associated with the items (|PEt|, z " 4.14,
p # .001, $ " 0.18; outcome Rt, z " %1.71, p " ns, $ " %0.06)
as well as for the value estimate for the scene category (|PEt|, z "
4.15, p # .001, $ " 0.19; estimate Vt, z " %1.16, p " ns,
$ " %0.04).

In addition, for the scenes correctly identified as old, we found
better source memory for scenes from the high-risk room (z "
2.05, p " .04, $ " 0.25 in a mixed-effects logistic regression
model testing for the effect of risk on source memory; see Figure
7C). This effect was not modulated by absolute prediction error.
Rather, it was a context effect: the source of a recognized image
was better remembered if that item was seen in the high-risk room
(absolute prediction errors, z " %0.60, p " ns, $ " %0.03; risk,
z " 2.17, p " .03, $ " 0.27). To verify that participants were not
simply attributing remembered items to the high-risk context, we
looked at the proportion of high-risk source judgments for recog-
nition hits and false alarms separately. We did not find a greater
proportion of high-risk source judgments for false alarms, indicat-
ing that participants were not biased to report that remembered
items belonged to a high-risk context (for high-risk hits, M " 0.57,
SE " 0.02; for false alarms, M " 0.49, SE " 0.04; chance
response is 0.50).

Participants also exhibited better sequence memory for pairs
from the high-risk room (z " 2.70, p " .007, $ " 0.56) in a
mixed-effects logistic regression model testing for the effect of
risk on sequence memory (see Figure 7D). Although we did not
see this effect in Experiment 1, the longer training in Experiment

Figure 6. Experiment 2, learning results. A: Average estimates for the high and low-value categories as a
function of trial number for the high and low-risk rooms. Participants learned better in the low-risk room,
indicated by the proximity of their guesses to the true values of the scenes (dashed horizontal lines). B: Density
plot of prediction errors (PEt) in each room. There were more high-magnitude prediction errors in the high-risk
in comparison to the low-risk room. C: There was an interaction for positive and negative prediction errors
between risk context and category value, such that participants overestimated the value of the low-value category
and underestimated the value of the high-value category to a greater extent in the high-risk room. Error bars
represent SEM. See the online article for the color version of this figure.
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2 allowed us to test pairs that were more distant from each other;
the most distant items were 13 and 14 trials apart. Indeed, in a
model additionally testing for the effect of distance between tested
pairs, greater distance predicted better sequence memory, control-
ling for risk (distance, z " 1.92, p " .05, $ " 0.39; risk, z " 2.70,
p " .006, $ " 0.56). We therefore replicated our original results
and further showed that other forms of episodic memory—source
and sequence memory—were also enhanced in a high-risk context.

Learning rate by risk and prediction error. We replicated
the results of Experiment 1 with respect to learning rates as well:
Participants had higher learning rates for the low-risk than the

high-risk room, and higher absolute prediction errors additionally
increased learning rates in a mixed-effects regression model test-
ing for the effect of risk and absolute prediction error on learning
rate (|PEt|, t " 5.12, p # .001, $ " 0.09; risk, t " 7.01, p # .001,
$ " 0.18; see Figure 8A-B). Controlling for absolute prediction
error, we again did not find learning rate to predict recognition
memory on the current trial (&t, z " %0.29, p " ns, $ " %0.01;
|PEt|, z " 4.44, p # .001, $ " 0.20), nor the subsequent trial (&t%1,
z " 0.68, p " ns, $ " 0.03; |PEt|: z " 3.53, p # .001, $ " 0.17).

Choice by value difference. In this experiment, all choices
were between images with matched-reward outcomes. We repli-

Figure 7. Experiment 2, memory results. A: Recognition memory was better for items within the high-risk
context. B: Absolute prediction errors enhanced recognition memory for the scenes. Item memory was binned
by the quartile values of prediction errors within each risk room; each dot represents the average value within
that quartile. C: For correctly remembered items, source memory was better for items within the high-risk
context. D: A high-risk context and distance between items (number of trials between pairs) increased sequence
memory. Error bars represent the SEM. See the online article for the color version of this figure.

Figure 8. Experiment 2, learning-rate results. A: Learning rate was higher in the low-risk context. Average
learning rate plotted by risk context and category value. B: Both absolute prediction errors and a low-risk context
increased learning rate. Learning rates were binned by prediction errors that occurred on the same trial. Each dot
represents the average prediction error within the binned range. Error bars represent the SEM. See the online
article for the color version of this figure.
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cated the results of Experiment 1 such that choice was predicted by
the difference in participants’ initial value estimates for the scenes,
z " 2.78, p " .005, $ " 0.18 (see Figure 9). In particular, even in
this better powered test (i.e., 12 choice trials compared with four
choice trials with matched outcomes in Experiment 1), there was
no evidence for preference for images from one risk context versus
the other, z " %1.56, p " ns, $ " %0.08.

Discussion

In Experiment 2, we doubled the number of training trials and
replicated the results of Experiment 1, showing that large predic-
tion errors increase learning rate and improve recognition memory,
but that higher learning rates do not predict better item recognition.
In fact, like in Experiment 1, learning rates were higher in the
low-risk room, but item recognition was better in the high-risk
room. Moreover, in this experiment, we demonstrated additional
risk-context effects on episodic memory by showing better se-
quence and source memory for items that were encountered in the
high-risk learning context. These results were separate from the
effect of absolute prediction errors, but perhaps point to general
memory enhancement for events occurring in a putatively more
arousing environment.

Experiment 3

A possible confound of the effects of risk on memory and
learning in Experiments 1 and 2 is that there was higher overlap

between the outcomes for the two categories in the high-risk
context compared with the low-risk context. The distributions of
outcomes for the indoor and outdoor scenes shared values from
20¢ to 80¢ (Experiments 1 and 2) in the high-risk room, but only
45¢ to 55¢ (Experiment 1) and 40¢ to 60¢ (Experiment 2) in the
low-risk room. This greater overlap in the high-risk context could
have made learning more difficult than in the low-risk room, and
therefore influenced the effects of absolute prediction error on subse-
quent memory. To test for this possibility, in Experiment 3 we made
the learning conditions in the two rooms more similar by eliminating
any overlap between the outcomes of the two categories.

Method

Participants. We conducted a simulation-based power analy-
sis of the effect of absolute prediction errors on item-recognition
memory, which revealed that we would have sufficient power
(80% probability) to replicate the results of Experiments 1 and 2
with as few as 55 participants. As a result, we had 100 participants
initiate the study, of which 86 completed the task. Three partici-
pants were excluded based on our exclusion criteria (see Experi-
ment 1), leaving a final sample of 83 participants.

Procedure. We followed the same procedure as in Experi-
ment 2 but changed the rewards, such that they had a mean of 80¢
for the high-value category and 20¢ for the low-value category,
and there was no overlap between the outcomes for scenes from
the two categories (high-risk–high-value scenes: 60¢, 70¢, 80¢,
90¢, 100¢; high-risk–low-value scenes: 0¢, 10¢, 20¢, 30¢, 40¢;

Figure 9. Experiment 3, learning results. A: Average estimates for the high- and low-value categories as a
function of trial number, separately for the high-risk and low-risk rooms. Participants learned better in the
low-risk room (although the difference in learning between risk rooms was smaller than in Experiments 1 and
2). B: Density plot of experienced prediction errors (PEt) in each room. Compared with Experiments 1 and 2,
there were higher magnitude prediction errors in the low-risk room, making the range of prediction errors more
similar between rooms. C: PEts show an interaction between risk context and category value, such that
participants overestimated the value of the low-value category and underestimated the value of the high-value
category to a greater extent in the high-risk room. Error bars represent the SEM. See the online article for the
color version of this figure.
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low-risk–high-value scenes: 70¢, 75¢, 80¢, 85¢, 90¢; low-risk–
low-value scenes: 10¢, 15¢, 20¢, 25¢, 30¢).

Results

Learning. As in Experiments 1 and 2, participants learned
better in the low-risk than in the high-risk room, t(82) " 6.28, p #
.001, in a paired t test comparing the average deviation of esti-
mates from the true means of the categories across rooms (see
Figure 9A). However, learning in the two rooms was more similar
here than in Experiment 2, as assessed by first computing the
difference in learning (average deviation of estimates from the true
means of the scene categories) between the high- and low-risk
rooms for each participant, and then comparing this value between
participants in Experiments 2 and 3, t(148.98) " 1.84, p " .03.
The range of prediction errors in the two rooms was also more
similar compared with Experiments 1 and 2 (see Figure 9B),
allowing us to better assess the effects of risk context on learning
and memory when controlling for prediction errors (see below). As
in previous experiments, there was an interaction between risk and
scene category, such that participants overestimated the low-value
category and underestimated the high-value category more in the
high-risk than in the low-risk room, F(1, 82) " 23.02, p # .001
(see Figure 9C). Nonetheless, participants correctly guessed the
high-value category equally well (and at a higher proportion than
in Experiments 1 and 2) in the high-risk (95%) and low-risk (96%)
rooms.

Memory by risk and prediction error. We replicated the
results of Experiments 1 and 2, and further found separate effects
of context and unsigned prediction error on recognition memory. A
high-risk context and larger absolute prediction errors enhanced
recognition memory for scenes, even with both predictors in the
same model, indicating independent effects (|PEt|, z " 2.24, p "
.02, $ " 0.12; risk, z " 2.58, p " .009, $ " 0.24; see Figure
10A–B). This effect was again significant when controlling for
reward outcome (|PEt|, z " 2.72, p " .007, $ " 0.15; Rt,
z " %0.38, p " ns, $ " %0.02) and value estimates (|PEt|, z "
2.70, p " .007, $ " 0.15; Vt, z " %0.74, p " ns, $ " %0.03).
Similar to Experiment 2, we again found better sequence memory

for items within the high-risk context, while controlling for the
effect of distance (risk, z " 2.47, p " .01, $ " 0.57; distance, z "
2.36, p " .02, $ " 0.55). For source memory, we did not have the
power to detect the effect in Experiment 2, and this difference was
not statistically significant, although it was in the same direction.

It is worth noting here that there was a stronger effect of context
in modulating recognition memory than in Experiments 1 and 2
(the context effect remained when controlling for absolute predic-
tion errors, unlike in Experiments 1 and 2). That is, when learning
was more similar in the two rooms, an independent effect of risk
on increasing recognition memory became apparent. One possible
explanation for this finding is that memory-boosting effects of
reward-prediction errors might “spill over” to adjacent trials, en-
hancing memory for those items as well. To test for these spill-
over effects in the high-risk context, we measured whether imme-
diately previous and subsequent absolute prediction errors
proactively or retroactively strengthened recognition memory for a
scene, while controlling for the absolute prediction error experi-
enced for that particular scene. We ran two mixed-effects logistic-
regression models testing for the effect of adjacent absolute pre-
diction errors (one for previous and one for subsequent prediction
error) on recognition memory. We did not find any effect of
adjacent prediction errors (|PEt%1|, z " %1.71, p " ns, $ " %0.13;
|PEt'1|, z " %0.93, p " ns, $ " %0.08), suggesting that the
memory-enhancing effect of the high-risk context may be due to
general enhanced memory for items experienced in a high-risk,
and potentially more arousing, environment.

Learning rate by risk and prediction error. As in Experi-
ments 1 and 2, absolute prediction errors increased learning rates
in both rooms, and there was a trend for higher learning rates in the
low-risk room (|PEt|, t " 3.33, p # .001, $ " 0.06; risk, t " 1.84,
p " .06, $ " 0.06; see Figure 11A–B). We again did not find
learning rate for values to predict recognition memory for the
scene on the current trial (z " %0.26, p " ns, $ " %0.01), nor the
subsequent trial (z " %1.22, p " ns, $ " %0.08), while control-
ling for the effect of absolute prediction error on the current trial.

Choice by value difference. As in Experiment 2, all choices
(12 trials) were between scenes that had matched-reward out-

Figure 10. Experiment 3, recognition-memory results. A: Recognition memory was better for scenes that were
encountered in the high-risk context. B: Both absolute prediction errors and a high-risk context independently
enhanced recognition memory for scenes. Item memory was binned by the quartile values of prediction errors
within each risk room. Each dot represents the average value within that quartile. Error bars represent the SEM.
See the online article for the color version of this figure.
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comes. Here too we replicated the results of Experiments 1 and 2,
such that participants were more likely to choose the scene for
which they had initially guessed a higher value (z " 3.98, p #
.001, $ " 0.29).

Discussion

In Experiment 3, we eliminated all overlap between the reward
outcomes of the high- and low-value categories in both rooms,
which had been a potential confound in Experiments 1 and 2, and
replicated our previous results. In addition, given the more similar
range of prediction errors in the high- and low-risk contexts, we
were able to detect an independent effect of risk context on
recognition memory. Improved recognition memory in the high-
risk room, like the better source and sequence memory observed
for high-risk events in Experiment 2, points to general memory
enhancement for events experienced in an environment with
greater reward variance.

General Discussion

Our aim was to determine how reward-prediction errors influ-
ence episodic memory, above and beyond their known influence
on learning. In Experiment 1, we demonstrated that unsigned, or
absolute, prediction errors enhanced recognition memory for a
rewarding episode. That is, trial-unique scenes that were accom-
panied by a large reward-prediction error, whether positive (re-
ceiving much more reward than expected) or negative (receiving
much less reward than expected) were better recognized in a
subsequent surprise recognition test. We additionally found that
risk context and absolute prediction errors modulated the trial-by-
trial rate, by which participants used the rewards to update their
estimates of the general worth of that category of scenes. In
particular, learning rate was higher in the low-risk environment,
and there was more learning from rewards that generated larger
prediction errors. Notably, although large prediction errors in-
creased learning from rewards on that specific trial, and enhanced
memory for the scene in the trial, we did not find a trial-by-trial
relationship between learning rate and memory accuracy. In fact,
the high-risk context led to lower learning rates but better recog-
nition memory on average, suggesting separate mechanisms un-
derlying these two effects of prediction errors.

In Experiment 2, we increased the number of trials, thereby
allowing for more learning in each context and placing more
demands on memory. We replicated all the effects from Experi-
ment 1, and further showed that source and sequence memory were
better for images encountered in the high-risk context. In Experi-
ment 3, we eliminated a potential confound by equating learning
difficulty in the high-risk and low-risk contexts, again reproducing
the original results. This manipulation also resulted in a more
similar range of prediction errors in both risk contexts, which
uncovered a separate effect of risk on episodic memory, above and
beyond that of absolute prediction errors.

Previous work has shown both a collaboration between learning
and memory systems, such as a boosting of memory for items
experienced during reward anticipation (Adcock, Thangavel,
Whitfield-Gabrieli, Knutson, & Gabrieli, 2006), including oddball
events (Murty & Adcock, 2013), and a competition between the
systems, such that the successful encoding of items experienced
prior to reward outcome was thought to interfere with neural
prediction errors (Wimmer et al., 2014). Here, in all three exper-
iments, we showed that incremental learning and episodic memory
systems collaborate as learning signals. Specifically, large reward-
prediction errors both increase learning rate for the value of the
rewarding source and enhance memory for the scene that led to the
prediction error. However, the fact that the effects of prediction
errors on learning rate and episodic memory were uncorrelated
suggests that these effects are mediated by somewhat separate
neural mechanisms.

Although we only tested behavior, neurobiological accounts
were the impetus for our experiments, adjudicating between the
effects of signed and unsigned reward-prediction errors on mem-
ory. Neurally, reward-prediction error modulation of dopamine
signaling provides a strong putative link between trial-and-error
learning and dopamine-induced plasticity in the hippocampus.
Such an effect of (signed) dopaminergic prediction errors from the
ventral tegmental area (VTA) to the hippocampus would have
predicted an asymmetric effect on memory, such that memories
benefit from a positive prediction error (signaled by an increase in
dopaminergic firing from the VTA), but not a negative prediction
error (signaled by decreased dopaminergic firing). Instead, we
found that the absolute magnitude of prediction errors, regardless
of the sign, enhanced memory. This mechanism perhaps explains

Figure 11. Experiment 3, learning-rate results. A: There was a trend for higher average learning rates in the
low-risk context. B: Absolute prediction errors increased learning rate. Learning rates were binned by prediction
errors on the same trial. Each dot represents the average prediction error within the binned range. Error bars
represent SEM. See the online article for the color version of this figure.
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the finding that extreme outcomes are recalled first, are perceived
as having occurred more frequently, and increase preference for a
risky option (Ludvig, Madan, & Spetch, 2014; Madan, Ludvig, &
Spetch, 2014).

In our task, each outcome was sampled with equal probability
(uniform distributions), meaning that extreme outcomes were not
rare. However, the mnemonic effects that we identified could
potentially also contribute to the well-demonstrated phenomenon
of nonlinear responses to reward probability in choice and in the
brain, characterized by the overweighting of low-probability
events and the underweighting of high-probability ones (Hsu,
Krajbich, Zhao, & Camerer, 2009; Kahneman & Tversky, 1979).
In particular, large prediction errors as a result of the occurrence of
rare events would mean that these events affect learning and
memory disproportionately strongly. Similarly, the underweight-
ing of very common events could arise from the rare cases in
which the common event does not occur, giving rise to large and
influential prediction errors. Our results suggest that these distor-
tions of weighting would be especially prominent when episodic
memory is used in performing the task.

The influence of unsigned reward-prediction errors on recogni-
tion memory is also reminiscent of work demonstrating better
memory for surprising feedback outside of reinforcement learning,
such as a recent study showing improved encoding of unexpected
paired associates (Greve, Cooper, Kaula, Anderson, & Henson,
2017). Another potentially related paradigm is the hypercorrection
effect (Butterfield & Metcalfe, 2001), where high-confidence er-
rors and low-confidence correct feedback (both potentially gener-
ating large prediction errors) lead to greater attentional capture and
improved memory (Butterfield & Metcalfe, 2006).

Neuroscientific work has linked surprising feedback to increases
in arousal and the noradrenergic LC (Clewett et al., 2014; Mather
et al., 2015; Miendlarzewska, Bavelier, & Schwartz, 2016). Our
finding that absolute prediction errors influenced subsequent mem-
ory is in line with a mechanism (also described in the Introduction)
whereby the LC-NE system responds to salient (surprising) events,
and dopamine coreleased with NE from LC neurons strengthens
hippocampal memories (Kempadoo et al., 2016; Takeuchi et al.,
2016). This proposed mechanism would seem to imply that in-
creases in learning rate (previously linked to NE release) and
enhanced episodic memory (linked to dopamine release) should be
correlated across trials, given the hypothesized common cause of
LC activation. However, we found that increases in learning rate
were uncorrelated with enhanced memory, suggesting that the
actual mechanism may involve additional (or different) steps from
the one described above.

In our task, learning rate not only increased with the magnitude
of prediction error, but also changed with the riskiness of the
environment. In line with our results, recent work shows that
learning rate scales inversely with reward variance, with higher
learning rates in lower variance contexts (Diederen & Schultz,
2015; Diederen et al., 2016). Greater sensitivity to the same-
magnitude prediction errors in a low-versus a high-variance envi-
ronment demonstrates adaptation to reward statistics, where in a
low-risk context, even small prediction errors are more relevant to
learning than they would be when there is greater reward variance.
This heightened sensitivity to unexpected rewards in the low-risk
environment, however, was not associated with improved episodic
memory in any of our experiments. In fact, in Experiment 3, we

found that memory was better for items experienced in the high-
risk context, even when controlling for the magnitude of trial-by-
trial reward-prediction errors. The opposing effects of risk on
learning rate and episodic memory again suggest distinct underly-
ing mechanisms, in agreement with work characterizing learning
and memory systems as separate and even antagonistic (Foerde et
al., 2013; Wimmer et al., 2014).

To explain the beneficial effect of high-risk environments on
episodic memory, we hypothesized that better memory for large
prediction-error events could potentially spill over to surrounding
items, in line with work showing that inducing an encoding state
(such as through the presentation of novel items) introduces a
lingering bias to encode subsequent items (Duncan & Shohamy,
2016; Duncan et al., 2012). These effects, however, did not explain
how risk context modulated memory in our task, as we did not find
prediction-error events to additionally improve memory for adja-
cent items. Instead, we speculate that this context effect is due to
improved encoding when in a putatively more aroused state, al-
though future studies should more directly characterize the link
between arousal and enhanced memory in risky environments.

Finally, we did not find effects of absolute prediction error or
risk context on preferences in a later choice test. It remains to be
determined, however, whether memories enhanced by large pre-
diction errors may still bias decisions by prioritizing which expe-
riences are sampled or reinstated during decision making.

In conclusion, we have shown that surprisingly large or small
rewards and high-risk contexts improve memory, revealing that
prediction errors and risk modulate episodic memory. We further
demonstrated that absolute prediction errors have dissociable ef-
fects on learning rate and memory, pointing to separate influences
on incremental learning and episodic memory processes.

References

Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., &
Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic acti-
vation precedes memory formation. Neuron, 50, 507–517. http://dx.doi
.org/10.1016/j.neuron.2006.03.036

Bates, D., Mächler, M., Bolker, B., Walker, S., Christensen, R. H. B.,
Singmann, H., . . . Grothendieck, G. (2015). Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67, 1–48. http://dx
.doi.org/10.18637/jss.v067.i01

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S.
(2007). Learning the value of information in an uncertain world. Nature
Neuroscience, 10, 1214–1221. http://dx.doi.org/10.1038/nn1954

Biele, G., Erev, I., & Ert, E. (2009). Learning, risk attitude and hot stoves
in restless bandit problems. Journal of Mathematical Psychology, 53,
155–167. http://dx.doi.org/10.1016/j.jmp.2008.05.006

Butterfield, B., & Mangels, J. A. (2003). Neural correlates of error detec-
tion and correction in a semantic retrieval task. Cognitive Brain Re-
search, 17, 793–817. http://dx.doi.org/10.1016/S0926-6410(03)00203-9

Butterfield, B., & Metcalfe, J. (2001). Errors committed with high confi-
dence are hypercorrected. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 27, 1491–1494. http://dx.doi.org/10.1037/
0278-7393.27.6.1491

Butterfield, B., & Metcalfe, J. (2006). The correction of errors committed
with high confidence. Metacognition and Learning, 1, 69–84. http://dx
.doi.org/10.1007/s11409-006-6894-z

Clewett, D., Schoeke, A., & Mather, M. (2014). Locus coeruleus neuro-
modulation of memories encoded during negative or unexpected action
outcomes. Neurobiology of Learning and Memory, 111, 65–70. http://
dx.doi.org/10.1016/j.nlm.2014.03.006

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

13DISSOCIABLE EFFECTS OF SURPRISING REWARDS

http://dx.doi.org/10.1016/j.neuron.2006.03.036
http://dx.doi.org/10.1016/j.neuron.2006.03.036
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1038/nn1954
http://dx.doi.org/10.1016/j.jmp.2008.05.006
http://dx.doi.org/10.1016/S0926-6410%2803%2900203-9
http://dx.doi.org/10.1037/0278-7393.27.6.1491
http://dx.doi.org/10.1037/0278-7393.27.6.1491
http://dx.doi.org/10.1007/s11409-006-6894-z
http://dx.doi.org/10.1007/s11409-006-6894-z
http://dx.doi.org/10.1016/j.nlm.2014.03.006
http://dx.doi.org/10.1016/j.nlm.2014.03.006


Diederen, K. M. J., & Schultz, W. (2015). Scaling prediction errors to
reward variability benefits error-driven learning in humans. Journal of
Neurophysiology, 114, 1628–1640. http://dx.doi.org/10.1152/jn.00483
.2015

Diederen, K. M. J., Spencer, T., Vestergaard, M. D., Fletcher, P. C., &
Schultz, W. (2016). Adaptive prediction error coding in the human
midbrain and striatum facilitates behavioral adaptation and learning
efficiency. Neuron, 90, 1127–1138. http://dx.doi.org/10.1016/j.neuron
.2016.04.019

Difallah, D. E., Catasta, M., Demartini, G., Ipeirotis, P. G., & Cudré-
Mauroux, P. (2015). The dynamics of micro-task crowdsourcing: The
case of Amazon MTurk. In Proceedings of the 24th International Con-
ference on World Wide Web (pp. 238–247). Geneva, Switzerland: In-
ternational World Wide Web Conferences Steering Committee. http://
dx.doi.org/10.1145/2736277.2741685

DuBrow, S., & Davachi, L. (2013). The influence of context boundaries on
memory for the sequential order of events. Journal of Experimental
Psychology: General, 142, 1277–1286. http://dx.doi.org/10.1037/
a0034024

Duncan, K. D., Sadanand, A., & Davachi, L. (2012). Memory’s penumbra:
Episodic memory decisions induce lingering mnemonic biases. Science,
337, 485–487. http://dx.doi.org/10.1126/science.1221936

Duncan, K. D., & Shohamy, D. (2016). Memory states influence value-
based decisions. Journal of Experimental Psychology: General, 145,
1420–1426. http://dx.doi.org/10.1037/xge0000231

Fazio, L. K., & Marsh, E. J. (2009). Surprising feedback improves later
memory. Psychonomic Bulletin & Review, 16, 88–92. http://dx.doi.org/
10.3758/PBR.16.1.88

Fazio, L. K., & Marsh, E. J. (2010). Correcting false memories. Psychological
Science, 21, 801–803. http://dx.doi.org/10.1177/0956797610371341

Foerde, K., Braun, E. K., & Shohamy, D. (2013). A trade-off between
feedback-based learning and episodic memory for feedback events:
Evidence from Parkinson’s disease. Neurodegenerative Diseases, 11,
93–101. http://dx.doi.org/10.1159/000342000

Gershman, S. J., & Niv, Y. (2013). Perceptual estimation obeys Occam’s
razor. Frontiers in Psychology, 4, 623. http://dx.doi.org/10.3389/fpsyg
.2013.00623

Greve, A., Cooper, E., Kaula, A., Anderson, M. C., & Henson, R. (2017).
Does prediction error drive one-shot declarative learning? Journal of
Memory and Language, 94, 149–165. http://dx.doi.org/10.1016/j.jml
.2016.11.001

Hsu, M., Krajbich, I., Zhao, C., & Camerer, C. F. (2009). Neural response
to reward anticipation under risk is nonlinear in probabilities. The
Journal of Neuroscience, 29, 2231–2237. http://dx.doi.org/10.1523/
JNEUROSCI.5296-08.2009

Ipeirotis, P. G. (2010). Analyzing the Amazon Mechanical Turk market-
place. XRDS: Crossroads, 17, 16 –21. http://dx.doi.org/10.1145/
1869086.1869094

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An analysis of
decision under risk. Econometrica, 47, 263–292. http://www.jstor.org/
stable/1914185 http://dx.doi.org/10.2307/1914185

Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D., & Kandel, E. R.
(2016). Dopamine release from the locus coeruleus to the dorsal hip-
pocampus promotes spatial learning and memory. PNAS: Proceedings of
the National Academy of Sciences of the United States of America, 113,
14835–14840. http://dx.doi.org/10.1073/pnas.1616515114

Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop:
Controlling the entry of information into long-term memory. Neuron, 46,
703–713. http://dx.doi.org/10.1016/j.neuron.2005.05.002

Ludvig, E. A., Madan, C. R., & Spetch, M. L. (2014). Extreme outcomes
sway risky decisions from experience. Journal of Behavioral Decision
Making, 27, 146–156. http://dx.doi.org/10.1002/bdm.1792

Madan, C. R., Ludvig, E. A., & Spetch, M. L. (2014). Remembering the
best and worst of times: Memories for extreme outcomes bias risky

decisions. Psychonomic Bulletin & Review, 21, 629–636. http://dx.doi
.org/10.3758/s13423-013-0542-9

Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2015). Norepi-
nephrine ignites local hot spots of neuronal excitation: How arousal
amplifies selectivity in perception and memory. Behavioral and Brain
Sciences, 39, e200.

McGuire, J. T., Nassar, M. R., Gold, J. I., & Kable, J. W. (2014).
Functionally dissociable influences on learning rate in a dynamic envi-
ronment. Neuron, 84, 870–881. http://dx.doi.org/10.1016/j.neuron.2014
.10.013

Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of
reward motivation on human declarative memory. Neuroscience and
Biobehavioral Reviews, 61, 156 –176. http://dx.doi.org/10.1016/j
.neubiorev.2015.11.015

Murty, V. P., & Adcock, R. A. (2013). Enriched encoding: Reward
motivation organizes cortical networks for hippocampal detection of
unexpected events. Cerebral Cortex, 24, 2160–2168. http://dx.doi.org/
10.1093/cercor/bht063

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., &
Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-
linked arousal systems. Nature Neuroscience, 15, 1040–1046. http://dx
.doi.org/10.1038/nn.3130

Niv, Y., Edlund, J. A., Dayan, P., & O’Doherty, J. P. (2012). Neural
prediction errors reveal a risk-sensitive reinforcement-learning process
in the human brain. The Journal of Neuroscience, 32, 551–562. http://
dx.doi.org/10.1523/JNEUROSCI.5498-10.2012

O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J.
(2003). Temporal difference models and reward-related learning in the
human brain. Neuron, 38, 329–337. http://dx.doi.org/10.1016/S0896-
6273(03)00169-7

Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Varia-
tions in the effectiveness of conditioned but not of unconditioned stim-
uli. Psychological Review, 87, 532–552. http://dx.doi.org/10.1037/0033-
295X.87.6.532

Pollack, I., & Norman, D. A. (1964). A non-parametric analysis of recog-
nition experiments. Psychonomic Science, 1, 125–126. http://dx.doi.org/
10.3758/BF03342823

Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of
cognition. Nature Reviews Neuroscience, 10, 211–223. http://dx.doi.org/
10.1038/nrn2573

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of
prediction and reward. Science, 275, 1593–1599.

Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors.
Annual Review of Neuroscience, 23, 473–500.

Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yama-
saki, M., Watanabe, M., . . . Morris, R. G. M. (2016). Locus coeruleus
and dopaminergic consolidation of everyday memory. Nature, 537,
357–362. http://dx.doi.org/10.1038/nature19325

Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of
reward value by dopamine neurons. Science, 307, 1642–1645. http://dx
.doi.org/10.1126/science.1105370

Weber, E. U., Blais, A.-R., & Betz, N. E. (2002). A domain-specific
risk-attitude scale: Measuring risk perceptions and risk behaviors. Jour-
nal of Behavioral Decision Making, 15, 263–290. http://dx.doi.org/10
.1002/bdm.414

Wimmer, G. E., Braun, E. K., Daw, N. D., & Shohamy, D. (2014).
Episodic memory encoding interferes with reward learning and de-
creases striatal prediction errors. The Journal of Neuroscience, 34,
14901–14912. http://dx.doi.org/10.1523/JNEUROSCI.0204-14.2014

Received February 28, 2017
Revision received October 25, 2017

Accepted October 28, 2017 !

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

14 ROUHANI, NORMAN, AND NIV

http://dx.doi.org/10.1152/jn.00483.2015
http://dx.doi.org/10.1152/jn.00483.2015
http://dx.doi.org/10.1016/j.neuron.2016.04.019
http://dx.doi.org/10.1016/j.neuron.2016.04.019
http://dx.doi.org/10.1145/2736277.2741685
http://dx.doi.org/10.1145/2736277.2741685
http://dx.doi.org/10.1037/a0034024
http://dx.doi.org/10.1037/a0034024
http://dx.doi.org/10.1126/science.1221936
http://dx.doi.org/10.1037/xge0000231
http://dx.doi.org/10.3758/PBR.16.1.88
http://dx.doi.org/10.3758/PBR.16.1.88
http://dx.doi.org/10.1177/0956797610371341
http://dx.doi.org/10.1159/000342000
http://dx.doi.org/10.3389/fpsyg.2013.00623
http://dx.doi.org/10.3389/fpsyg.2013.00623
http://dx.doi.org/10.1016/j.jml.2016.11.001
http://dx.doi.org/10.1016/j.jml.2016.11.001
http://dx.doi.org/10.1523/JNEUROSCI.5296-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.5296-08.2009
http://dx.doi.org/10.1145/1869086.1869094
http://dx.doi.org/10.1145/1869086.1869094
http://www.jstor.org/stable/1914185
http://www.jstor.org/stable/1914185
http://dx.doi.org/10.2307/1914185
http://dx.doi.org/10.1073/pnas.1616515114
http://dx.doi.org/10.1016/j.neuron.2005.05.002
http://dx.doi.org/10.1002/bdm.1792
http://dx.doi.org/10.3758/s13423-013-0542-9
http://dx.doi.org/10.3758/s13423-013-0542-9
http://dx.doi.org/10.1016/j.neuron.2014.10.013
http://dx.doi.org/10.1016/j.neuron.2014.10.013
http://dx.doi.org/10.1016/j.neubiorev.2015.11.015
http://dx.doi.org/10.1016/j.neubiorev.2015.11.015
http://dx.doi.org/10.1093/cercor/bht063
http://dx.doi.org/10.1093/cercor/bht063
http://dx.doi.org/10.1038/nn.3130
http://dx.doi.org/10.1038/nn.3130
http://dx.doi.org/10.1523/JNEUROSCI.5498-10.2012
http://dx.doi.org/10.1523/JNEUROSCI.5498-10.2012
http://dx.doi.org/10.1016/S0896-6273%2803%2900169-7
http://dx.doi.org/10.1016/S0896-6273%2803%2900169-7
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://dx.doi.org/10.3758/BF03342823
http://dx.doi.org/10.3758/BF03342823
http://dx.doi.org/10.1038/nrn2573
http://dx.doi.org/10.1038/nrn2573
http://dx.doi.org/10.1038/nature19325
http://dx.doi.org/10.1126/science.1105370
http://dx.doi.org/10.1126/science.1105370
http://dx.doi.org/10.1002/bdm.414
http://dx.doi.org/10.1002/bdm.414
http://dx.doi.org/10.1523/JNEUROSCI.0204-14.2014

	Experiment 1
	Method
	Participants
	Procedure
	Learning
	Memory
	Choice
	Statistical analysis


	Results
	Learning
	Memory by risk and prediction error
	Learning rate by risk and prediction error
	Choice by reward and value difference

	Discussion

	Experiment 2
	Method
	Participants
	Procedure

	Results
	Learning
	Memory by risk and prediction error
	Learning rate by risk and prediction error
	Choice by value difference

	Discussion

	Experiment 3
	Method
	Participants
	Procedure

	Results
	Learning
	Memory by risk and prediction error
	Learning rate by risk and prediction error
	Choice by value difference

	Discussion

	General Discussion
	References

