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Abstract 

Theories of mental context and memory posit that successful mental context reinstatement enables 

better retrieval of memories from the same context, at the expense of memories from other contexts. 

To test this hypothesis, we had participants study lists of words, interleaved with task-irrelevant images 

from one category (e.g., scenes). Following encoding, participants were cued to mentally reinstate the 

context associated with a particular list, by thinking about the images that had appeared between the 

words. We measured context reinstatement by applying multivariate pattern classifiers to fMRI, and 

related this to performance on a free recall test that followed immediately afterwards. To increase 

sensitivity, we used a closed-loop neurofeedback procedure, whereby higher classifier evidence for the 

cued category elicited increased visibility of the images from the studied context onscreen. Our goal 

was to create a positive feedback loop that amplified small fluctuations in mental context 

reinstatement, making it easier to experimentally detect a relationship between context reinstatement 

and recall. As predicted, we found that greater amounts of classifier evidence were associated with 

better recall of words from the reinstated context, and worse recall of words from a different context. 

In a second experiment, we assessed the role of neurofeedback in identifying this brain-behavior 

relationship by presenting context images again and manipulating whether their visibility depended on 

classifier evidence. When neurofeedback was removed, the relationship between classifier evidence 

and memory retrieval disappeared. Together, these findings demonstrate a clear effect of context 

reinstatement on memory recall and suggest that neurofeedback can be a useful tool for characterizing 

brain-behavior relationships. 

 

Highlights 

- Closed-loop neurofeedback with real-time fMRI externalizes context reinstatement 

- With neurofeedback, multivariate pattern classifier evidence relates to memory recall 

- Simulations describe a how closed-loop neurofeedback amplifies the brain-behavior relationship  
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Introduction 

A key aspect of modern theories of context and memory (e.g., Polyn et al., 2009) is the ability 

to deliberately enact mental time travel: reinstating contextual features associated with a prior event in 

order to gain access to memories from that event (DuBrow et al., 2017; Manning et al., 2014). These 

theories predict that, following successful mental context reinstatement, memory performance should 

be improved for items encoded in the reinstated context relative to items from other contexts.  

In this study, we set out to obtain neural evidence that deliberate context reinstatement predicts 

subsequent memory: We instructed participants to mentally time travel to a particular event and 

measured (based on brain activity) how well they did this, with the goal of showing that successful 

mental context reinstatement predicts successful recall of items from that context. Other related work 

has examined category-specific activation during a free recall task and found neural evidence for the 

to-be-recalled category prior to item recall (Polyn et al., 2005). However, this work confounded item 

and context activation, making it unclear whether the evidence for a category (e.g., face) reflected 

retrieval of a specific face item or a general face context.  

 To measure context recall separately from item recall, we used a method previously developed 

in our lab (Gershman et al., 2013), in which pictures of faces and scenes were used to establish 

contexts; both of these categories are known to robustly activate regions of visual cortex in fMRI 

(O’Craven et al., 1999). Specifically, we presented task-irrelevant pictures from one of these categories 

(either faces or scenes) interposed between to-be-learned word stimuli, thereby using these images to 

create a “context” for these words. Having established this item-context link, we were able to use 

neural activation of the “context” category to track whether participants were mentally reinstating the 

context. We have previously used this approach to predict memory misattribution errors (Gershman et 

al., 2013) and to explore intentional forgetting (Manning et al., 2016).  

 Despite the utility of this approach, context reinstatement is a subtle and dynamic internal 

mental process that is difficult to measure precisely. To amplify sensitivity to small neural fluctuations 
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indicative of context reinstatement, we used a fMRI neurofeedback design (deBettencourt et al., 2015; 

Stoeckel et al., 2014; Sulzer et al., 2013). During time periods when participants were instructed to 

think back to a particular context (e.g., the list studied with interspersed scenes), we monitored in real 

time for neural activity relating to the context (e.g., scenes), while at the same time showing a stream 

of images from the target context (scenes that were actually presented during learning of the target 

word list) superimposed on images from the non-target context (faces that were presented with the 

other word list). When we detected brain activity relating to the target context, we increased the 

relative visibility of images from the target context. Participants were aware that the scene/face 

mixture proportion indicated their success at the context reinstatement task. 

Our goal was to create a positive feedback loop where increased internal mental context 

reinstatement led to increased visibility of picture cues from the target context that triggered even more 

context reinstatement, thereby amplifying mental context reinstatement and (through this) boosting our 

ability to relate these neural fluctuations to memory performance. In our prior work (deBettencourt et 

al., 2015) we used a similar kind of neurofeedback to externalize participants’ top-down attentional 

state (i.e., whether they were attending to faces or scenes). Specifically, we instructed participants to 

attend to faces or scenes while they viewed superimposed faces and scenes; when their attention to the 

target category lapsed (as indexed by reduced category-specific evidence) we made that category less 

visible. The goal in that study was cognitive training, i.e., improving participants’ ability to detect and 

hence prevent attentional lapses. In the present study, the goal of neurofeedback was to amplify 

fluctuations in context reinstatement, not for the purpose of training participants, but rather to improve 

our ability as experimenters to detect these fluctuations and relate them to behavior.  

We developed a task composed of three phases: encoding, context reinstatement, and recall 

(Figure 1). First, participants studied two lists of sixteen words; the first list (List A) was encoded in 

one of the category contexts (e.g., with scenes interleaved between the words) and the second list (List 

B) was encoded in the other category context (e.g., with faces interleaved between the words). After 
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encoding (and a brief period of math distraction), participants were cued by the list name (e.g., List B) 

to reactivate the context associated with either the first or second list. Then, participants were 

presented with composite face/scene images, initialized to equal proportions (0.5/0.5) of each category. 

During context reinstatement, participants were instructed to think about the target category (e.g. 

faces), and were given real-time neurofeedback using the method described above. After context 

reinstatement, participants were presented with another list name (usually the list that had been cued, 

e.g., List B), which served as a memory probe. Their instructions were to freely recall as many words 

as possible from the probed list in any order. Participants’ vocal responses were recorded in the 

scanner during the recall phase.  

 

Figure 1 Study procedure. An example run of the task in Experiment 1. Each run was composed of encoding, 
context reinstatement, and recall phases. During the encoding phase, participants studied two lists of sequentially 
presented words, Lists A & B. Each of the lists was embedded in a different context by interleaving the words with 
images of a single category (scenes or faces). During the context reinstatement phase, participants were provided 
with a list name (e.g., List B) as a cue for which context (either scenes or faces) to reinstate. Participants were 
presented with composite face/scene images, initialized at 50% face and 50% scene. This mixture proportion was 
adjusted during the context reinstatement period to reflect the real-time decoding evidence for the cued context. 
The top row shows representative composite images. The middle row shows the corresponding proportion of the 
cued category of the composite image. The bottom row shows the real-time classifier evidence for the cued minus 
the uncued category for each TR during the context reinstatement period. Greater evidence for the cued context 
resulted in more of that category in the composite image (and less evidence resulted in less of that category). 
During the recall phase, participants were presented with a list name as a memory probe. Then, they were 
instructed to freely recall as many words as possible from the probed list. In validly cued runs (6 of 8 runs, 75%), 
the memory probe was the same as the context cue. In invalidly cued runs (2 of 8 runs, 25%), the memory probe 
was different from the context cue  
 

Critically, in Experiment 1, we manipulated whether the context that participants were asked to 

reinstate matched the list they were subsequently asked to recall (e.g., reinstate the List B context, then 

recall List B; the validly cued condition) or whether the reinstated context mismatched the list they 
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were asked to recall (e.g., reinstate the List B context, then recall List A; the invalidly cued condition). 

This manipulation was inspired by many studies of visual attention (e.g., Posner, 1980), which find 

that valid spatial cues improve performance and invalid cues impair performance. These findings are 

often explained in terms of spatial attention being focused on the cued location, which improves 

subsequent processing when the target appears at that location and impairs processing when the target 

appears elsewhere and attention needs to be reoriented. We expected an analogous effect in the 

memory domain with our context reinstatement manipulation, whereby the cue orients reinstatement 

towards the targeted list, improving recall from that list and impairing recall from other lists (Polyn et 

al., 2009). In order to ensure the effectiveness of the cueing procedure, cues were valid 75% of the 

time (6 of 8 runs). Invalidly cued runs (25%) occurred when the cue (e.g., List B) did not match the 

probe (e.g., List A). Our key prediction was that the relationship between target-category neural 

activity and recall behavior would be positive in the valid condition (i.e., greater reinstatement of the 

target context should help participants remember items from the target list) and negative in the invalid 

condition (i.e., greater reinstatement of the instructed context should be detrimental because 

participants were instructed to “mentally time travel” to the wrong context). We followed this 

experiment with computational simulations using a simple model of contextual reinstatement, to refine 

our intuitions about how closed-loop neurofeedback could support memory recall. Finally, in 

Experiment 2, we investigated if the link between neural decoding and behavior disappeared without 

feedback.  

 

Experiment 1: Materials and Methods 

Participants 

Twenty-four adults participated in Experiment 1 for monetary compensation (14 female, 22 right-

handed, mean age = 20.9 years). Power analyses could not be performed because of the use of a new 

paradigm and unknown behavioral and neural effect sizes. The sample size was chosen before the start 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
NEUROFEEDBACK CONTEXT  Page 7 of 34 

of the experiment to match previous studies using a similar paradigm (Manning et al., 2016). Six 

additional fMRI participants were excluded from Experiment 1: two because of technical problems 

with real-time data or audio acquisition, one for falling asleep during several runs, and three for 

excessive motion, defined both within (≥ 3 mm) as well as across run (≥ 5 mm), due to the lack of real-

time motion correction across runs during the fMRI session. All participants had normal or corrected-

to-normal visual acuity and provided informed consent to a protocol approved by the Princeton 

University Institutional Review Board. 

 

Stimuli 

Word lists. Prior to the experiment, we created 16 lists of words, with each list containing 16 words. 

Words and lists were derived from those used in a previous experiment (Manning et al., 2016). In 

Experiment 1, participants were presented with 16 lists in total. Each of these lists was randomly 

paired with a context of faces or scenes. The order of the words within lists and the order of lists 

during the experiment were randomized for each participant.  

 

Images. Images consisted of grayscale photographs of male and female faces (Phillips et al., 1998) and 

indoor and outdoor scenes (Xiao et al., 2010). These images were combined into composite stimuli by 

averaging pixel intensities using various weightings (e.g., 60% face, 40% scene). The stimuli were 

displayed on a projection screen at the back of the scanner bore and viewed with a mirror attached to 

the head coil. 

 

Procedure 

Localizer runs. Participants completed two localizer runs, viewing blocks of scene, face, and object 

images. Each block consisted of 12 images, presented for 1s with a 0.5s period of fixation between 
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each image. A total of 12 blocks were presented, with 4s of fixation separating each block. Participants 

were asked to detect back-to-back image repetitions, and respond by pressing a button.  

 

Memory runs. Each memory run began with 38s fixation, followed by three phases: study, context 

reinstatement, and recall. During the study phase, participants studied two lists. For each list, the name 

of the list (either “LIST A” or “LIST B”) was presented for 3s, followed by 1.5s fixation. Each word 

was presented for 3s. Between each word, 3 images (either faces or scenes) were presented, each for 

1s. In total, each list was composed of 16 words and 45 images, with 6s of fixation at the end. For each 

memory run, one studied list was paired with a scene context and the other with a face context. After 

the study phase, there was a brief period of math problems (15s) to distract participants and prevent 

rehearsal: the response mapping for the math problems was first displayed for 1.5s, followed by 9 math 

problems for 1.5s each. Each math problem involved determining whether the sum of two single digit 

numbers (e.g., 3+4) was even or odd. After the math section was complete, there was a 3s fixation 

period. 

 

At the start of the context reinstatement period, the cue (either “LIST A” or “LIST B”) was displayed 

for 3s. This was followed by 33.75s of 45 images, each displayed for 0.75s. For feedback runs, these 

images were composite face and scene images. The first two images (1.5s) were always initialized at 

50% face and 50% scene. The mixture proportions for the remaining trials were determined on the 

basis of real-time multivariate pattern analysis (MVPA) of the fMRI data, ranging from 17% to 98% of 

the category of the cued context (83% to 2% of the category of the uncued context) as in 

(deBettencourt et al., 2015). In Experiment 1, the images presented during context reinstatement were 

composites of the actual faces and scene images that had appeared during the study phase for the 

current memory run. Both the face and scene images appeared in a random order. At the end of the 

context reinstatement period, before the memory probe appeared, there was a 0.75s fixation period. 
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The recall phase began with a 3s memory probe, indicating the name of the list to recall (either “LIST 

A” or “LIST B”). Then, the fixation dot on the screen turned green to indicating the start of the recall 

period. Participants were given 45s to recall the items from one of the lists in any order. At the end of 

the recall period, the fixation dot turned back to white for 4s. Then, participants were presented with a 

point score from that run's context reinstatement period, corresponding to classifier decoding 

performance during the context period (i.e., classifier accuracy for the target category). No feedback 

was provided on their recall performance. At the end of the experiment, participants received up to $10 

extra corresponding to their cumulative points across all the runs. The purpose of providing this 

monetary bonus was to ensure that participants tried to reinstate context during the reinstatement phase 

(as opposed to solely focusing on recall performance).  

 

Participants completed 8 runs of the task (6 valid and 2 invalid). There were more valid than invalid 

runs, to ensure that participants would be motivated to attend to the cue. In addition, the first two runs 

of the experiment were always valid. One invalid run occurred during runs 3–5, and the other invalid 

run occurred during runs 6–8, and the invalid runs were not permitted to occur back-to-back (i.e., runs 

5 and 6). Behavioral and neural analyses relating to recall were conducted on runs where it was 

possible an invalid cue could occur (i.e., runs 3–8). Runs 1 and 2 were excluded so as to minimize the 

temporal imbalance and any resulting practice effects between valid vs. invalid conditions. The two 

invalid runs were counterbalanced for list cue (one invalid run cued List A and the other cued List B) 

and cued context category (one invalid run cued the scene category and the other cued the face 

category).  

 

Importantly, participants were aware that what they saw onscreen during the reinstatement period was 

controlled by their brain activity. Before the fMRI session, they were given instructions about the 
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experiment, which included the feedback manipulation. They were told that the images in the context 

reinstatement period would reflect our measurements of their mental context, and that the images 

would get easier to see if they were reinstating context well. They completed an abbreviated run of the 

task outside the scanner to familiarize themselves with the experimental design. During that run, they 

were shown examples of a composite stimulus, and how the mixture proportion could change due to 

our measurements. 

 

Data acquisition 

Experiments were run using the Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997). 

Neuroimaging data were acquired with a 3T MRI scanner (Siemens Skyra) using a 20-channel head 

and neck coil. We first collected a scout anatomical scan to align axial functional slices to the anterior 

commissure-posterior commissure line. Then, a high-resolution magnetization-prepared rapid 

acquisition gradient-echo (MPRAGE) anatomical scan was acquired to use for real-time spatial 

registration. Functional images were acquired using a gradient-echo, echo-planar imaging sequence 

(1.5s repetition time or TR, 29 ms echo time, 3 × 3 × 3.5 mm voxel size, 64 × 64 matrix, 192 mm field 

of view, 27 slices).  

 

Experimental design and statistical analysis 

Because some of the data violated the assumption of normality, all statistics were computed using a 

nonparametric random-effects approach in which participants were resampled with replacement 

100,000 times (Efron and Tibshirani, 1986). Null hypothesis testing was performed by calculating the 

proportion of the iterations in which the bootstrapped mean was in the opposite direction. One-sided 

tests were used for directional hypotheses and two-sided tests for non-directional hypotheses. 

Correlations between two variables were estimated with Spearman's rank correlation after applying 

robust methods to eliminate the disproportionate influence of outliers in small samples (Pernet et al., 
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2013). Outliers were excluded only if they exceeded 2.5 standard deviations (s.d.) from the mean; all 

outlier exclusions are noted in the text.  

 

Real-time analyses 

Preprocessing. At the start of the fMRI session, an anatomical region-of-interest (ROI) was registered 

to the native functional space using FSL's FLIRT. For Experiment 1, the temporal lobe was a priori 

selected to be the ROI given its known involvement in representing contexts for memories. During the 

fMRI session, functional data were reconstructed and prospective acquisition correction and 

retrospective motion correction were applied. After motion correction, the file was transferred to a 

separate analysis computer for the remainder of the real-time analyses. The anatomical ROI mask was 

applied to reduce the voxel dimensionality. The volume was spatially smoothed in Matlab using a 

Gaussian kernel with full-width half-maximum (FWHM) = 5 mm. In Experiment 1, a high-pass filter 

adapted from FSL (cutoff = 100s) was applied in real time. After each localizer run, the BOLD activity 

of every voxel was z-scored over time. During memory runs, the BOLD activity of each voxel was z-

scored starting after the study period based on the mean and standard deviation until then.  

 

Multivariate pattern analysis. A multivariate pattern classifier was trained on data from the face and 

scene blocks from both localizer runs. Labels were shifted 3 TRs (i.e., 4.5s) forward in time to account 

for the hemodynamic lag. For Experiment 1, we conducted MVPA using penalized logistic regression 

with L2-norm regularization (penalty = 1).  

 

The trained model was tested in real time on brain volumes obtained during the context reinstatement 

period. For each volume, the classifier estimated the extent to which the brain activity pattern matched 

the pattern for the two categories (face and scene) on which it was trained (from 0 to 1); we will refer 

to this quantity as classifier evidence. The neurofeedback was based on the difference of classifier 
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evidence for the task-relevant category minus the task-irrelevant category. Given that this was a binary 

classifier, the evidence for the two categories was anticorrelated. The subtraction means that the 

difference in evidence ranges from −1 (complete evidence for the wrong category) to 1 (complete 

evidence for the correct category). We will refer to this difference score as the neural context 

reinstatement score. 

 

Neurofeedback. The neural context reinstatement score for each volume (TR) was used to determine 

the proportion of the images from the cued and uncued categories in the composite stimulus on the 

next trial. The preprocessing and decoding of volume i were performed during volume i+1 and the 

neural context reinstatement score for volume i was used to update the stimulus mixture for the two 

trials in volume i+2. This resulted in a minimum lag of 1.5s (one TR or two composite images) 

between data acquisition and feedback. Moreover, neural context reinstatement was averaged over a 

moving window of the preceding three volumes (i−2, i−1 and i for feedback in volume i+2), meaning 

that feedback was based on brain states 1.5–6s in the past. The averaged neural context reinstatement 

score was mapped to a proportion of the task-relevant category using a sigmoidal transfer function 

(deBettencourt et al., 2015).  

 

Behavioral analyses 

Vocal responses were recorded during the recall period using a customized MR-compatible recording 

system (FOMRI II; Optoacoustics Ltd.). We used the Penn TotalRecall tool to score and annotate the 

audio. All annotations were completed without knowledge of the experimental design and were 

verified by an independent scorer who had no knowledge of the experimental manipulation or 

hypotheses.  

 

Decoding accuracy 
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Multivariate pattern classifiers were trained using the face and scene blocks from both localizer runs. 

Classifier performance was assessed by testing the classifier on TRs during the context reinstatement 

period (as with classifier training, labels were shifted forward 3 TRs (4.5s) to account for 

hemodynamic lag). Two measures were used: classifier evidence for the cued category and accuracy. 

A TR was labeled as accurate if the evidence for the cued category was greater than the evidence for 

the uncued category. To assess whether there was any bias at the start of the context reinstatement 

period, classifier accuracy was calculated for the data from the last TR during cue presentation (i.e., 

when participants were being informed which list to reinstate; earlier TRs could have been 

contaminated by lingering signal from list B). To evaluate classifier performance during the context 

reinstatement period, accuracy was computed during the entire context reinstatement phase. Chance 

was assessed by permuting labels 100,000 times and recalculating classifier accuracy for each of these 

permutations.  

 

Relationship to behavior 

To explain how context reinstatement related to memory behavior, we first obtained summary 

measures for each of these components for each run: (1) how successful participants were at reinstating 

the cued context and (2) their memory performance. For this analysis, neural context reinstatement was 

operationalized as the classifier evidence for the cued context minus classifier evidence for the uncued 

context, averaged over the context reinstatement period. To boost sensitivity, we limited this 

measurement to the subset of TRs for which there was significantly-above-chance accuracy in 

decoding the cued context (3-18; see Fig. 2); we also report results for when we measured neural 

context reinstatement using the full set of TRs. Memory performance was calculated as total number of 

distinct words that were recalled for the probed list.  

 

Experiment 1 Results 
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Real-time multivariate decoding of mnemonic context 

We first assessed the overall degree to which participants were reinstating the cued context during the 

reinstatement period; we expected that there would be greater classifier evidence for the cued context, 

compared to the uncued context. Consistent with this prediction, the real-time multivariate pattern 

classifier reliably decoded the cued context during the context reinstatement period when averaged 

across all TRs (accuracy = 58%, 95% CIs 57–60%; chance = 0.5; one-tailed p<0.001; Figure 2). We 

further examined which TRs could reliably decode the cued category; this was true for each of TRs 3–

18, one-tailed p<0.05. At the start of the context reinstatement period, there was no reliable evidence 

for the cued category (mean evidence = 0.52, 95% CIs 0.43–0.58; chance = 0.5; one-tailed p=0.73).  

 

 

Figure 2. Timecourse of real-time multivariate classifier decoding of context. The average classifier evidence for 
each participant across all feedback runs is plotted in thin gray lines. The average timecourse across participants is 
plotted in black, with the gray ribbon indicating the standard error of the mean. The y-axis shows the classifier 
evidence for the cued category minus the classifier evidence of the uncued category. The x-axis shows the number 
of TRs (1.5s) during the context reinstatement phase.  

 

Behavioral effects 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
NEUROFEEDBACK CONTEXT  Page 15 of 34 

During the validly cued runs of Experiment 1, participants were cued to mentally reinstate the same 

context for the list they were later asked to recall. During the invalidly cued runs of Experiment 1, the 

context reinstatement cue did not match the memory probe. If prior context reinstatement influenced 

later memory, overall memory recall should be higher on valid versus invalid runs. Consistent with the 

idea that reinstating an appropriate context boosts memory recall, more items were recalled in the valid 

as compared to the invalid condition (Mvalid=5.85, 95% CIs 4.83–7.14; Minvalid=5.29, 95% CIs 4.08–

6.75; one-tailed p=0.03; Figure 3a). 

 

 

Figure 3. Effects of context reinstatement cue validity on memory in Experiment 1. (a) Memory recall 
performance. For valid runs, the cue at the start of the context reinstatement period matched the memory probe at 
the start of the free recall period. For invalid runs, the cue did not match the memory probe. Each gray dot 
indicates the average number of words recalled per participant (n=24). The height of the bar indicates the 
population average, and the error bars indicate the standard error of the mean. Memory performance was enhanced 
following valid cues (* p<0.05). (b) To quantify the relationship between classifier evidence and recall, we 
computed (across runs, within each participant) the linear fit between classifier evidence and recall, separately for 
valid runs and invalid runs. Statistics were computed using the slopes of the linear fits per condition. Each dot 
corresponds to the slope of the linear fit in a single condition (valid or invalid) for each participant. The height of 
the bar indicates the population average, and the error bars indicate the standard error of the mean. The slope 
relating classifier evidence to behavior differed between valid and invalid runs (*** p<0.001). (c) For validly cued 
runs, the amount of context reinstatement positively related to the number of recalls (p<0.01). That is, there was a 
reliably positive relationship between the evidence for the cued context minus uncued context (x-axis) and the total 
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number of recalls (y-axis) for each run. The linear fit across runs within a single participant is depicted as a gray 
line. The mean linear fit is depicted in teal. (d) In invalidly cued runs, the amount of context reinstatement 
negatively related to the number of recalls (p<0.01). The linear fit across runs within a single participant is 
depicted as a gray line. The mean linear fit is depicted in orange.  

 

The key question that we asked in this study pertains to the relationship between neural context 

reinstatement and memory behavior: We hypothesized that higher levels of neural context 

reinstatement would correlate with higher levels of recall for validly cued lists and lower levels of 

recall for invalidly cued lists.  

 To test this hypothesis, we computed the relationship between neural context reinstatement and 

recall performance across runs (within participants, separately for valid and invalid runs) and then 

averaged this measure across participants. Each participant had 6 valid memory runs; for each run, we 

computed our index of neural context reinstatement (classifier evidence for the cued vs. uncued 

context over the course of the reinstatement period), and also the total number of recalls for each tested 

list. This yields a participant-specific scatterplot with 6 points (one per memory run). For each 

participant, we computed the slope of the line relating context reinstatement to recall performance. We 

then evaluated the reliability of the slope of this line across participants. For invalid memory runs, we 

used the same analysis procedure (this time focusing on the 2 invalid runs) to estimate the relationship 

between context reinstatement and recall performance on these runs. 

 As predicted, we observed a reliably positive relationship between neural context reinstatement 

and recall performance across valid runs (slopevalid=2.48, 95% CIs 0.63–4.32; n=23; one-tailed 

pvalid=0.005; Figure 3b&c). Thus, greater amounts of context reinstatement resulted in better memory. 

For invalid runs, we expected there to be a negative relationship between neural context reinstatement 

and recall performance, and this prediction was also upheld (slopeinvalid=−5.23, 95% CIs −9.92– 1.59; 

one-tailed pinvalid=0.004; Figure 3b&d). Importantly, the relationship between context reinstatement 

and memory was significantly most positive for valid than invalid runs (one-tailed pdiff<0.001). As 

noted earlier, these correlations were completed using data from all TRs for which there was above 
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chance classification in the context reinstatement period, shifted for hemodynamic lag. However, 

classification similar results were observed when using data from the entire context reinstatement 

period (slopevalid=2.19, 0.82–4.01; one-tailed pvalid=0.001; slopeinvalid=−1.66, −3.46–0.54;one-tailed 

pinvalid=0.06; one-tailed pdiff=0.002; n=23, 1 outlier excluded that exceeded 2.5 s.d. from the mean).  

 Note that the valid-condition results, considered on their own, could be explained in terms of a 

third factor (e.g., general alertness) that positively affects both context reinstatement and recall 

performance. However, the valid and invalid results can not together be explained this way: If general 

alertness benefits both context reinstatement and recall, resulting in a positive relationship between 

them, this relationship should be observed in both the valid and invalid conditions, but this was not the 

case. The most parsimonious account of the valid and invalid results together is our hypothesis, that 

context reinstatement facilitates recall of a one list at the expense of the other.  

 For the analyses reported above, neural context reinstatement and memory were calculated 

across the valid and invalid runs separately within participants. However, the validity of the cue was 

fairly high (75%) and therefore the number of invalid runs was low (2 invalid runs in total, during runs 

3–8). When participants did not differ substantially in context reinstatement for these two runs, this 

resulted in extreme slope values. We wanted to be certain that the relationship between context and 

memory in the invalid runs was not driven by any extreme values and/or our outlier exclusion 

procedure. Therefore, we conducted a similar analysis, but computing the relationship at the group, 

rather than individual, level. First, to keep the analysis focused on within-participant variance (as 

opposed to between-participant variance), we normalized neural context reinstatement scores and 

number of recalls within condition (valid, invalid) for each participant. Then, we calculated the linear 

relationship (i.e., slope) between neural context reinstatement and memory recall performance across 

all invalid runs from all individuals. The relationship between neural context reinstatement and 

memory recall performance remained negative (slopeinvalid=−0.54, −0.83– −0.21). We assessed the 

reliability of this relationship by conducting a bootstrap correlation analysis in which we resampled 
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participants with replacement and calculated the correlation on each new sample (Kim et al., 2014). 

This bootstrapped correlation was reliably negative (one-tailed pinvalid<0.001). These results provide 

additional evidence that reinstating an inappropriate context with neurofeedback prior to recall 

adversely influences subsequent memory performance.  

 These same group-wise analyses were conducted by normalizing context reinstatement and 

recalls within the validly cued runs. We found that the slope computed across valid runs from all 

participants remained positive (slopevalid=0.34, 0.10–0.52). A bootstrapped correlation was calculated 

by resampling participants with replacement and calculating the correlation on each new sample; this 

bootstrapped correlation was reliably positive (one-tailed pvalid=0.002). Lastly, with these group-wise 

analyses the difference between the bootstrapped correlations in the valid and invalid conditions 

remained robustly different (one-tailed pdiff<0.001).  

 

Simulations 

To summarize the results thus far: In Experiment 1, we obtained a relationship between neural context 

reinstatement (measured with fMRI) and subsequent recall, using neurofeedback. This raises the 

question: How important was the use of neurofeedback in obtaining these results? Could we have 

obtained this relationship between neural context reinstatement and subsequent recall without using 

neurofeedback? As discussed earlier, we used neurofeedback in Experiment 1 because of our intuition 

that it improves our ability to measure subtle fluctuations in context reinstatement, compared to other 

approaches. To verify this intuition, we ran simulations comparing our neurofeedback condition to 

various other (non-neurofeedback) control conditions. The goal of these simulations was to consider 

potentially informative control experiments that could be run. The code for these simulations  will be 

publicly posted upon acceptance of the paper. 

 The simulations sought to capture what occurs during the context reinstatement period of our 

experiment (Figure 4a). Note that these simulations did not use the data from Experiment 1; rather, 
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they used simulated data generated from the model. For each simulated participant, we ran the 

simulation six times (corresponding to multiple study-test runs within a participant). During the first 2 

(simulated) TRs, a top-down cue biased the mental context towards a particular category (scene). The 

cue level was varied parametrically across 6 feedback runs, ranging from a modest amount of evidence 

for the cued category to a large amount of evidence for the cued category (0.10, 0.25, 0.40, 0.55, 0.70, 

0.85).  

During the context reinstatement period, classifier evidence reflected a mix of bottom-up 

influences (the category being viewed) and top-down influences (context reinstatement). Furthermore, 

in line with existing theories of mental context drift, the level of internal context reinstatement at one 

moment was related to the context reinstatement at a previous moment. Specifically, internal context 

reinstatement at a particular TR was determined by the internal context reinstatement from the 

previous TR, as well as by the perceptual evidence from the previous TR (with the former set to have 

twice as strong an influence as the latter). Classifier evidence was determined by previous internal 

context and the perceptual evidence (both from 2 TRs ago, to account for the hemodynamic lag), with 

additional noise (internal context and perceptual evidence were set to have an equally strong influence 

on classifier evidence, and noise was set to have an influence three times stronger than each of these 

other factors). At the end of the context reinstatement period, the average level of internal context 

reinstatement across the entire reinstatement period (where 0 = minimal reinstatement and 1 = maximal 

reinstatement) was used to determine the number of words recalled, in the following manner: For each 

word (out of 16) we chose a random value (0–1); all words whose random value fell below the average 

level of contextual reinstatement were marked as correctly recalled. Finally, we calculated the 

correlation between classifier evidence and the number of words recalled, just as we did in the actual 

experiment.  

In the (simulated) neurofeedback condition, classifier evidence influenced perceptual evidence, 

which in turn, influenced internal context reinstatement. This was intended to emulate the feedback 
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directionality of Experiment 1, which itself was modeled after our prior study (deBettencourt et al., 

2015). That is, higher levels of classifier evidence for the cued category led to greater visibility of (and 

thus greater perceptual evidence for) the cued category.  

We simulated five control conditions to contrast against real-time neurofeedback: First, we 

included controls where we held the amount of perceptual evidence for the cued category constant (at 

three different levels: 100%, 50%, 0%). In addition, we included two types of time-varying feedback: 

inverted feedback, in which the mapping between classifier evidence and perceptual evidence was 

flipped, and yoked-control feedback, in which the perceptual evidence was selected from a different 

run. In the inverted feedback condition, more classifier evidence for the cued category resulted in less 

perceptual evidence for the target stimulus category. By re-running these simulations 10,000 times, we 

established distributions of correlations between classifier evidence and memory recall across these 

conditions. 
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Figure 4 Simulating feedback. (a) A schematic of the hypothesized context reinstatement process with the link 
mediated by real-time neurofeedback in orange. Classifier evidence is jointly determined by internal mental 
contextual reinstatement and external perceptual evidence for context. Neurofeedback “closes the loop” by 
allowing classifier evidence to influence perceptual evidence (b) Results of computational simulations of the 
correlation between classifier evidence and memory recall behavior. Simulations were completed for various 
manipulations of the feedback as well as perceptual evidence: real-time neurofeedback (in which the perceptual 
evidence reflects the classifier evidence for the cued category), maximal perceptual input (100% cued category, 
0% uncued category), balanced perceptual input (50% cued category, 50% uncued category), no perceptual input 
(0% cued, 0% uncued), inverted real-time neurofeedback (in which the perceptual evidence reflects the classifier 
evidence for the uncued category), and yoked-control feedback (in which the perceptual evidence reflects the 
classifier evidence from another run. Each violin plot represents the correlations computed across 10,000 
simulations. The mean correlation is depicted in the horizontal black line, and 95% CIs in the vertical black line.  

 

Simulation results and discussion 

As shown in Figure 4b, the correlation between classifier evidence and recall observed in the feedback 

condition was higher than the other conditions (Spearman rank correlation: rfeedback=0.46, 

r100%cued=0.17, r50%cued=0.20, r0%cued=0.21, rinverted=0.07, ryoked=0.22). Taken together, these results 
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validate our intuition that closed-loop neurofeedback can positively amplify subtle fluctuations in the 

internal state of context, in comparison to many other possible control conditions.  

 In Experiment 2, we wanted to verify experimentally that the neurofeedback condition is 

especially sensitive to the relationship between context reinstatement and recall. In an ideal world, we 

could run all controls, but we only had the time and resources to focus on one. Choosing a control 

condition is not easy for neurofeedback studies, insofar as there are many different alternative 

hypotheses and each control condition addresses a subset of these hypotheses. For example, the yoked-

control approach (which we used in deBettencourt et al., 2015) has several benefits: It controls for the 

specific stream of images that participants view, and it also controls for instructions provided to 

participants (both neurofeedback participants and yoked controls are told that their brain activity is 

controlling stimulus visibility, which should control for any general motivational effects of being told 

that you are in a neurofeedback experiment). However, it also has several drawbacks: If we find a 

worse relationship between brain activity and recall, it could be due to lack of accurate neurofeedback 

or because participants get distracted or frustrated when the feedback does not match their own sense 

of their mental state. That is, any observed differences between conditions might be due to yoking 

being harmful rather than neurofeedback being helpful. Also, if we yoke the images but do not say that 

fluctuations in visibility are due to neurofeedback, this fails to control for nonspecific motivational 

effects of participants thinking they are getting brain-based feedback (also, images varying in a way 

that has nothing to do with participants’ brain state might be distracting).  

 We next considered a control condition where pictures from the target context are 100% visible 

during the reinstatement period (instead of being mixed with pictures from the other controls). This 

control tests whether merely showing “reminder” images from the target context is sufficient to reveal 

a relationship between neural context reinstatement and recall behavior. If this is the case, then 

showing fully visible images from the target context should yield an especially robust effect. This 

control also has obvious drawbacks: It does not control for motivation that comes from participants 
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thinking they are getting neurofeedback, and it does not match the exact image stream seen by 

neurofeedback participants. However, because there is no one perfect control, we decided to try this 

100% visible control condition — showing images from the target context seemed to us to be the most 

direct way to trigger context reinstatement. In the discussion, we talk about inferences that we can (and 

cannot) glean from this condition. 

 

Experiment 2: Materials and Methods 

Here we compare performance with feedback to a control condition in which stimulus 

information was not modulated by the participant's mental context. We kept the basic structure of the 

runs the same as it was in Experiment 1, but eliminated the second list (participants only studied one 

list per run before recall) and removed the invalid condition in order to focus on the difference between 

valid neurofeedback and the control condition. For 6 of the 12 runs of Experiment 2, context 

reinstatement was provided as in the first experiment, and participants received neurofeedback with 

composite face/scene images as in Experiment 1. For the other 6 non-feedback runs, participants 

viewed all of the images that had appeared between words during the encoding phase at full coherence 

without any competitive information on the screen (100% cued context). That is, they viewed fully 

coherent scenes during the context reinstatement phase, rather than composite face/scene pairs, in order 

to provide the strongest possible visual cues for context reinstatement.  

 

Participants 

Twenty-four adults participated in Experiment 2 for monetary compensation (11 female, 22 right-

handed, mean age = 19.3 years). The sample size was matched to that of Experiment 1. Five additional 

fMRI participants were excluded from Experiment 2: one due to lack of understanding the instructions, 

and four for excessive motion, using the same standards as in Experiment 1. All participants had 
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normal or corrected-to-normal visual acuity and provided informed consent to a protocol approved by 

the Princeton University Institutional Review Board. 

 

Stimuli 

The word list stimuli for Experiment 2 were a subset of those used in Experiment 1: we selected 12 (of 

the original 16) word lists. The word lists were interleaved with scene images (not faces). During the 

context reinstatement portion of the feedback runs, face images (not presented at study) were overlaid 

on the studied scenes in order to alter the mixture proportions.  

 

Procedure 

Participants completed two localizer runs, as in Experiment 1. Also as before, each memory run was 

composed of three phases: study, context reinstatement, and recall. The details of the memory runs 

were the same as in Experiment 1, except for the following changes: In Experiment 1, participants 

studied two lists in each memory run (one with faces and one with scenes); in Experiment 2, there was 

only a single list in each study period (List A), which was always paired with a scene context. Also, in 

Experiment 2, all lists were validly cued (i.e., the reinstated context always matched the list that 

participants were asked to recall). In Experiment 2, 6 of the runs (50%) were real-time neurofeedback 

runs and 6 of the runs (50%) were control, non-feedback runs. Participants were informed ahead of 

time that some runs would be feedback runs and some would not. These runs were counterbalanced 

such that every 4 runs (i.e., 1–4, 5–8, and 9–12) contained 2 valid feedback runs and 2 valid non-

feedback runs. As such, there was no temporal imbalance, and all runs were included in the subsequent 

analyses. In the feedback runs of Experiment 2, the images presented during context reinstatement 

were composite face and scene images (as in feedback runs from Experiment 1). The scene images 

were those that had appeared during the encoding phase in a random order. The face images were 

randomly selected from a list without replacement so that each face image was only presented once 
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throughout Experiment 2. In non-feedback runs during Experiment 2, the images presented during 

context reinstatement were scene images (fully coherent, or 100%). The scene images were those from 

the study phase, presented in random order. As in the previous experiment, participants could earn up 

to $10 based on the classifier decoding during the context reinstatement phase. They saw their scores 

at the end of the run, when the recall period had ended. The payment bonus was derived from the 

cumulative score across all runs (both feedback and non-feedback).  

 

Data acquisition, statistical analysis, real-time analysis 

Data acquisition and (offline) statistical analysis methods were identical to the methods used in 

Experiment 1. The real-time analysis methods were mostly the same as in Experiment 1, except for the 

following changes: First, in Experiment 2, the temporal lobe ROI that we used in Experiment 1 was 

expanded to also include the occipital lobe. This decision was based on offline analyses of the data 

from Experiment 1 that demonstrated that including the occipital lobe resulted in higher overall 

classifier accuracy. Second, in Experiment 1, a high-pass filter adapted from FSL (cutoff = 100s) was 

applied in real time, but in Experiment 2, no such high-pass filter was applied (since the run length was 

shorter). Third, in Experiment 1, we conducted MVPA using penalized logistic regression with L2-

norm regularization (penalty = 1), but in Experiment 2 (based on the results of offline reanalysis of 

data from Experiment 1 to optimize classification), we modified the logistic regression algorithm for 

Experiment 2 to have L1-norm regularization (penalty = 1). We calculated classifier evidence for the 

cued context using the same TRs in Experiment 2 that had previously been used in Experiment 1 (TRs 

3–18). 

 

Experiment 2: Results 

By design, the feedback and control non-feedback conditions differed in the overall amount of 

context-relevant information on the screen. In the non-feedback runs, participants were presented with 
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strong context cues via fully coherent images during the reinstatement phase. On the other hand, in 

neurofeedback runs, there is overall weaker perceptual evidence on the screen, but there is a link 

between what the participant sees and what their internal context is. Given these bottom-up perceptual 

differences, it is perhaps unsurprising that the conditions differed in the total amount of classifier 

evidence decoded during the context reinstatement period. During the runs with feedback, when 

participants viewed composite face/scene mixtures, the average accuracy of the multivariate pattern 

classifier was 0.58, which was reliably above chance (95% CIs 0.49–0.67; chance = 0.5; p=0.037), as 

in Experiment 1. During the control runs without feedback, when participants viewed unmixed images, 

the average accuracy of the multivariate pattern classifier was 0.90 (95% CIs 0.88–0.93; chance = 0.5; 

one-tailed p<0.001) and this was reliably greater than the feedback runs (one-tailed p<0.001). 

 The larger goals of this experiment were to (a) replicate the (valid-condition) effects observed 

in Experiment 1 and (b) investigate whether the relationship between neural context reinstatement and 

memory recall was observed in a condition without closed-loop neurofeedback. Our hypothesis was 

that the link between neural context reinstatement and memory recall is fostered by our neurofeedback 

procedure, and therefore would be larger in the feedback condition than in the non-feedback condition. 

 While the intent of the feedback manipulation was to boost sensitivity to the brain-behavior 

relationship (between neural context reinstatement and recall), not to boost overall recall, we 

nonetheless looked at the effects of the feedback manipulation on recall performance. We found no 

reliable difference between the average number of words recalled in control, non-feedback runs and 

neurofeedback runs (recallsfeedback=8.88, 7.75–10.22; recallscontrol=9.10, 7.94–10.30, two-tailed p=0.44; 

Figure 5a-c).  
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Figure 5 Feedback mediates the link between context reinstatement and memory in Experiment 2. (a) Memory 
recall performance. In feedback runs, validly-cued feedback was provided during the context reinstatement period. 
In non-feedback control feedback runs, there was no real-time feedback during the context reinstatement period 
Each dot corresponds to the average number of recalls for a participant (n=24). The height of the bar indicates the 
population average. The error bars indicate standard error of the mean. Memory performance did not reliably 
differ between these feedback and non-feedback conditions (p>0.1). (b) To quantify the relationship between 
classifier evidence and recall, we computed (across runs, within each participant) the linear fit between classifier 
evidence and recall, separately for feedback runs and non-feedback runs. Statistics were computed using the slopes 
of the linear fits per condition. Each dot corresponds to the slope of the linear fit in a single condition (feedback or 
no feedback) for each participant. The relationship between context reinstatement and memory performance was 
reliably greater in the feedback condition than in the non-feedback condition (** p<0.01). (c) Evidence for the 
cued context in the feedback condition was positively related to the number of recalls, replicating the effect in the 
valid feedback condition of Experiment 1 (p<0.05). The linear fit for each participant is depicted as a gray line. 
The teal line is the mean fit across the population. (d) Evidence for the cued context in the non-feedback control 
condition was not positively related to memory recall performance (p>0.1). The black line is the mean fit across 
the population.  

 

Next, we repeated the analyses developed during the first experiment, to examine whether 

neural context reinstatement during feedback runs relates to subsequent memory recall performance. 

Indeed, we replicated the positive relationship between neural context reinstatement in validly cued 
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runs and memory performance, this time using an entirely different group of participants 

(slopefeedback=1.64, 0.15–3.29, one-tailed p=0.02; n=24, Figure 5b&c).  

 Lastly, we investigated whether this same positive relationship was present without 

neurofeedback. In fact, there was no such relationship between context reinstatement and memory 

performance in the runs without feedback (slopenofeedback=−3.60, −7.49 – −0.44; one-tailed p=0.98, 

n=23, 1 outlier excluded that exceeded 2.5 s.d. from the mean; Figure 5b&d); the relationship was 

actually reliably negative. The difference in slope between the feedback and non-feedback conditions 

was reliable (one-tailed pdiff=0.004). These results fit with our hypothesis that neurofeedback makes it 

easier to identify a link between context reinstatement and recall performance.  

 It is notable that recall levels were similar across conditions even though classifier evidence 

was much higher in the non-feedback condition. If classifier evidence perfectly tracked contextual 

reinstatement (which then drives recall), we would expect higher levels of recall in the non-feedback 

condition. The fact that recall levels were matched therefore shows that classifier evidence does not 

perfectly track contextual reinstatement. A better account of classifier evidence in our studies is that it 

is affected both by bottom-up perceptual evidence for faces/scenes (which is much higher in the non-

feedback condition, and does not directly affect memory) and contextual reinstatement (which does 

directly affect memory). This hypothesized pattern of relationships is built into our simulations (see 

Fig. 4). This model helps to explain why classifier evidence can be related to recall (as was shown in 

Experiments 1 and 2) but also can dissociate from recall (as is evident from the finding, here, that 

feedback vs. non-feedback in Experiment 2 affects classifier evidence but not recall). 

 

Discussion 

In the studies presented above, we demonstrated that context reinstatement (measured with fMRI) 

predicts subsequent free recall success: Reinstating the correct context boosts recall success 

(Experiment 1, replicated in Experiment 2) and reinstating the incorrect context reduces recall success 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
NEUROFEEDBACK CONTEXT  Page 29 of 34 

(Experiment 1). These results extend prior work by Polyn et al. (2005) and others (e.g., Morton et al., 

2013), by showing that it is specifically context (not item) reinstatement that drives this effect. In this 

study, contexts and to-be-learned items were different types of stimuli (contexts were face or scene 

pictures; items were uncategorized words). Furthermore, the neurofeedback was derived from a 

multivariate pattern classifier that had been trained on an independent localizer period without any 

words. Taken together, these features of the design make it extremely unlikely that the classifier 

(applied during the reinstatement period) was picking up directly on recall of words, as opposed to 

context activation. One intermediate possibility (fully consistent with our theoretical account) is that 

participants were recalling some words during the reinstatement period, which caused context 

activation (which was then detected by the classifier). However, we think that even this intermediate 

interpretation is somewhat unlikely: During the reinstatement period, we instructed participants to 

focus on the images so as to discourage using the reinstatement time to rehearse words. Also, 

participants were told that they would receive additional monetary reward based on activating the 

correct context during the reinstatement period, which should have further encouraged them to focus 

on context reinstatement as opposed to word recall during this period.  

 Our intent in using neurofeedback was to boost sensitivity to small fluctuations in context 

reinstatement by amplifying them, thereby making it easier to identify a relationship between context 

reinstatement (measured neurally) and behavior. That is, we are using neurofeedback to improve 

measurement sensitivity as opposed to using it as a performance booster. Simulations that we ran 

(comparing our neurofeedback condition to various controls) support the intuition that neurofeedback 

can boost experimental sensitivity.  

Experiment 2 provides some support for the claim that neurofeedback is especially useful for 

identifying the relationship between context reinstatement and recall behavior. In this experiment, we 

compared neurofeedback to a condition where images from original context were 100% visible (we 

expected that this would be the strongest possible reinstatement cue); we observed a significantly 
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larger relationship between our neural measure of context reinstatement and recall behavior in the 

neurofeedback condition than in the 100% visible control condition. Previous studies have 

demonstrated that providing real-time fMRI can reveal insights about cognition (e.g., Cortese et al., 

2016; Lorenz et al., 2018). Here, we extend that finding to demonstrate neurofeedback can more 

tightly link fluctuations of internal mental context with memory retrieval. 

 Having said this, our conclusions about the specific role of feedback in identifying this 

relationship are necessarily preliminary. As noted earlier, different control conditions address different 

issues, and no single control condition can establish that neurofeedback is necessary. The 100%-visible 

control condition that we used in Experiment 2 may have failed to show an effect because it lacked 

neurofeedback; alternatively, it may have failed to show an effect for other reasons. For example, there 

was less variability in classifier evidence in the control condition than the neurofeedback condition — 

this restricted range effect may have made it harder to link classifier evidence to behavior in this 

condition. In future work, it will also be highly informative to look at a zero-visibility control condition 

(i.e., where the screen is blank during the reinstatement period); this control will tell us whether 

internal mental context reinstatement on its own is sufficient to drive a relationship between brain 

activity (during the reinstatement period) and recall behavior. Other future directions for this work 

could explore how brain/behavior links are modified if classifier is returned from other neural regions 

or networks known to be involved in context reinstatement that were not explored here. 

 Another important future direction for this work is to improve the specificity and sensitivity of 

our neural measure of context reinstatement. As noted above, our category classifier (applied to 

occipitotemporal regions) does not perfectly track context reinstatement in our paradigm, insofar as it 

is also strongly influenced by bottom-up perception. It is well known that other brain regions beyond 

temporal and occipital lobes are strongly involved context reinstatement (in particular, the posterior 

medial network; Ranganath and Ritchey, 2012). Incorporating information from these networks may 

improve the specificity of our classifier readout; this, in turn, could improve the correlation between 
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classifier evidence and behavior, and it could also increase the usefulness of feedback, possibly to the 

point where we would see a net improvement in recall in the feedback (vs. non-feedback) condition.  

 In closing, it is important to emphasize that neurofeedback can be used for multiple purposes: 

In other, recent neurofeedback studies, feedback has been used to drive learning. For example, this 

technique has been used for training participants to improve their sustained attention performance 

(deBettencourt et al., 2015), training new associations (as in Amano et al., 2016; see also 

deBettencourt and Norman, 2016), and reducing established fearful associations (Koizumi et al., 

2017). Recently, researchers have used real-time fMRI to link behavior and neural activity, e.g., to 

dissociate confidence from accuracy (Cortese et al., 2016), to link brain activity with experience in a 

focused attention task (Garrison et al., 2013), to optimize experimental design (Lorenz et al., 2016), 

and to characterize a multidimensional task space (Lorenz et al., 2018). Here, we used neurofeedback 

in a potentially complementary way, to amplify brain activity fluctuations and improve measurement 

sensitivity for a cognitive process (context reinstatement) that we think is important for memory. 

 

Conclusions 

In this study, we have demonstrated that closed-loop neurofeedback is a useful tool for testing theories 

of memory retrieval; here, we used it to establish a relationship between context reinstatement (prior to 

the onset of recall) and memory performance. This technique could be expanded to other experiments 

in which context has a major role. For example, closed-loop neurofeedback could be used in a task 

where participants are asked to “flush” context instead of recover context. This process of eliminating 

context has been demonstrated to have a critical role in intentional forgetting (Manning et al., 2016; 

Sahakyan and Kelley, 2002). Eventually, it might be possible to further develop this technique to 

provide training for context reinstatement, and to study and treat psychiatric disorders that involve 

context-cued recall, such as addiction and post-traumatic stress disorder.  
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