

BrainIAK Education: User-Friendly Tutorials for Advanced, Computationally-Intensive fMRI Analysis

Manoj Kumar¹, Cameron T. Ellis², Qihong Lu¹, Hejia Zhang¹, Mihai Capota³, Theodore L. Willke³, Peter J. Ramadge¹, Nicholas B. Turk-Browne², Kenneth A. Norman¹

¹Princeton University, ²Yale University, ³Intel Corporation

Yale

UNIVERSITY

Available now at:

https://brainiak.org/tutorials

Getting started

Data Handling

Load, reshape and normalize fMRI data in Python

Condition membership of each TR from a run

Dimensionality Reduction

Apply PCA and other feature selection techniques

Activity of each PC for all runs and stimuli

Classification

Run a classifier using leave-one-run-out cross-validation

Face vs scene classification for each participant

Classifier optimization

Use cross-validation to optimize classifier hyperparameters

Inter-run consistency of L1 (left) and L2 (right) weights

Advanced Techniques

RSA

Compare pattern similarity for human and non-human data

Item-level correlation, clustering into item category

Searchlights

Setup and run a parallelized

Thresholded searchlight of face vs scene

Seed-based Connectivity

Define seeds and compute functional connectivity

Whole-brain parcellation correlation matrix

Inter-Subject Correlation

Calculate correlations between subjects to estimate task-specific signal

Inter-subject correlation during movie watching

Event Segmentation

Find latent event states in continuous, naturalistic stimuli

TR to TR correlation with event boundaries overlaid

searchlight analysis

Full Correlation Matrix analysis

Perform an unbiased, seedless, full brain correlation analysis

Circos plot of every voxel in the brain's correlation with all others

Shared Response Modeling

Use a common stimulus to project subjects into a shared functional space

Raw and SRM-based reconstructed voxel activity

Real-time

Handle and classify fMRI data generated in real-time

Tools

Integrates numerous free resources

Installation

Several installation options: Cloud for running on mobiles/laptops Docker and Conda for local installation on Mac, Windows and Linux Server and cluster installation for job

submission

Data

Uses publicly available datasets, including block, event-related and movie designs

Preprocessing has been completed to minimize startup

Can be adapted to your datasets easily

Contribute

We welcome contributions to the BrainIAK methods and tutorials.

Completely free and open-source. The tutorials, data, and preprint are avialable here: https://brainiak.org/tutorials

Chat with us on Gitter

Acknowledgements

Funding for this project was provided by Intel labs

We would like to thank the many contributors to the BrainIAK code base, BrainIAK examples, and all the tutorial testers and students for their contributions

Plot Credit: Clara Colombatto, Jacob Prince, Sreejan Kumar, and Paula J. Brooks