The Impact of Predictability on Memory Representations

Manoj Kumar1, Nicholas B. Turk-Browne2, Kenneth A. Norman1
1Princeton University, 2Yale University

Competitor Activation: Differentiation vs. Integration

Schapiro et al. (2012) explored how predictability modulates statistical learning:
- When B followed A 100% of the time, hippocampal representations of A and B became more similar (integrated)
- When B followed A only 33% of the time, representations became less similar (differentiated)

Possible explanation:
Non-monotonic plasticity hypothesis (NMPH; Ritvo et al., 2019)

If activation of B (given A) is proportional to predictability: Possibly 33% 100%

Here, we set out to replicate and extend the above results by using a wider range of transition probability values

Hypothesis: higher activation of B in response to A for higher transition probabilities; moderate activation should lead to differentiation; strong activation should lead to integration.

Methods

- **Group 1: Open**
- **Group 2: Closed**

A-B pairs were from the same group, but different categories
Pairs were sometimes violated with A followed by item X

X was always from the other group, facilitating detection of the prediction of B during violation trials

Open vs. closed distinction is optimal for decoding scenes from neural activity (Krawitz et al., 2011)

Subjects made a natural vs. man-made task judgement from neural activity (Kravitz et al., 2011)

Open vs. closed distinction is optimal for decoding scenes from neural activity (Kravitz et al., 2011)

Using Probabilistic Transitions to Manipulate Memory Activations

Design

<table>
<thead>
<tr>
<th>Pair A-B</th>
<th>Violations A-X</th>
<th>Average probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 repetitions</td>
<td>14 violations</td>
<td>12.5%</td>
</tr>
<tr>
<td>8 repetitions</td>
<td>8 violations</td>
<td>50%</td>
</tr>
<tr>
<td>16 presentations, 5-violations</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Day 1 Pre-learning

- 4 runs
- A-B random sequence

Day 2 Post-learning

- 1 run
- All B Items

Analyses

Online prediction of item B when item A is presented:

- Evidence for B = Similarity to item B
- Baseline similarity to other items

Overall representational change

Use Probabilistic Curve Induction and Testing (P-CIT) toolbox (Detre et al., 2013) to continuously map between B activation to representational change

Prediction Strength vs. Transition Probability

Prediction strength within each transition probability level

Overall slope (maroon) and individual subject slopes (grey), maroon band denotes 95% CI

Preliminary findings indicate a positive slope, prediction strength increasing as a function of transition probability

Overall representational change

Noisy results in partial sample, more data are needed

P-CIT: Discrete to Continuous

Steps in P-CIT analysis (Detre et al., 2013)

1) Randomly sample curve (piecewise linear w/3 segments)
2) Evaluate curve by using it to predict learning (representational change) given measured activation values
3) Repeat procedure many times; estimated curve is weighted combination of all sampled curves

For our study, we will use all 16 trials for a given pair to measure B activation (given A), and we will relate this to representational change for that pair

Summary

These are preliminary results, data collection is in progress
Hypotheses and analysis approaches have been pre-registered

We see a trend of increasing prediction strength with increasing transition probability, as hypothesized

A P-CIT analysis will be performed to validate NMPH

References

Acknowledgements

This project was funded by NIH Grant R01MH095495 to N.B.T.-B. and K.A.N.

M.K. would like to thank Jordan Gunn for help with fmriprep. Elizabeth McDermott and Jeff Wammes for useful discussions, and the Princeton pygers group for help with fmriprep.

email: manoj.kumar@gmail.com