““% PRINCETON
& UNIVERSITY

Competitor Activation:
Differentiation vs. Integration

Schapiro et al. (2012) explored how predictability modulates
statistical learning:

When B followed A 100% of the time, hippocampal
representations of A and B became more similar (integrated)

When B followed A only 33% of the time, representations
became less similar (differentiated)

Possible explanation:
Non-monotonic plasticity
hypothesis (NMPH; Ritvo et
al., 2019)
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If activation of B (given A) is
proportional to predictability:

Here, we set out to replicate and extend the above results by
using a wider range of transition probability values

Hypothesis: higher activation of B in response to A for higher
transition probabillities; moderate activation should lead to
differentiation; strong activation should lead to integration.

Methods

Group 1: Open

Group 2: Closed

A-B pairs were from the same group, but different categories
Pairs were sometimes violated with A followed by item X

X was always from the other group, facilitating detection of
the prediction of B during violation trials

Open vs. closed distinction is optimal for decoding scenes
from neural activity (Kravitz et al., 2011)

Subjects made a natural vs. man-made task judgement

Neural patterns extracted 4.5 s after stimulus onset
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Using Probabilistic Transitions to
Manipulate Memory Activations

Design
Pair A-B Violations A-X  Average
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Day 1 Pre-learning
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4 runs
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Day 2 Post-learning

1 run All B items

Analyses
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Online prediction of item B when item A is presented:
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Use Probabilistic Curve Induction and Testing (P-CIT) toolbox (Detre et al.,
2013) to continuously map between B activation to representational change

Prediction Strength vs.

Transition Probability

Prediction strength within each transition probability level

Evidence for B
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Overall slope (maroon) and individual subject slopes (grey),
maroon band denotes 95% CI
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Preliminary findings indicate a positive slope, prediction
strength increasing as a function of transition probability

Overall representational change
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Noisy results in partial sample, more data are needed

P-CIT may be more sensitive, relating actual measurements

of prediction strength to differentation/integration

The Impact of Predictability on Memory Representations
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P-CIT: Discrete to Continuous

Steps in P-CIT analysis (Detre et al., 2013)
1) Randomly sample curve (piecewise linear w/3 segments)

2) Evaluate curve by using it to predict learning
(representational change) given measured activation values
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3) Repeat procedure many times; estimated curve is
weighted combination of all sampled curves

For our study, we will use all 16 trials for a given pair to
measure B activation (given A), and we will relate this to
representational change for that pair

Summary

These are preliminary results, data collection is in progress

Hypotheses and analysis approaches have been
pre-registered

We see a trend of increasing prediction strength with
increasing transition probability, as hypothesized

A P-CIT analysis will be performed to validate NMPH
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