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Overall representational change

Prediction Strength vs.
Transition Probability

Noisy results in partial sample, more data are needed

P-CIT may be more sensitive, relating actual measurements 
of prediction strength to differentation/integration
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A-B pairs were from the same group, but different categories

Pairs were sometimes violated with A followed by item X

X was always from the other group, facilitating detection of 
the prediction of B during violation trials

Open vs. closed distinction is optimal for decoding scenes 
from neural activity (Kravitz et al., 2011)

Subjects made a natural vs. man-made task judgement

Neural patterns extracted 4.5 s after stimulus onset

Competitor Activation:
Differentiation vs. Integration

Schapiro et al. (2012) explored how predictability modulates 
statistical learning:

When B followed A 100% of the time, hippocampal 
representations of A and B became more similar (integrated)

When B followed A only 33% of the time, representations 
became less similar (differentiated)

Possible explanation: 
Non-monotonic plasticity 
hypothesis (NMPH; Ritvo et 
al., 2019)

If activation of B (given A) is 
proportional to predictability:
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Online prediction of item B when item A is presented: 
 
  

Overall representational change   

Steps in P-CIT analysis (Detre et al., 2013)

1) Randomly sample curve (piecewise linear w/3 segments)

2) Evaluate curve by using it to predict learning 
(representational change) given measured activation values

3) Repeat procedure many times; estimated curve is 
weighted combination of all sampled curves

For our study, we will use all 16 trials for a given pair to 
measure B activation (given A), and we will relate this to 
representational change for that pair

These are preliminary results, data collection is in progress

Hypotheses and analysis approaches have been 
pre-registered

We see a trend of increasing prediction strength with 
increasing transition probability, as hypothesized

A P-CIT analysis will be performed to validate NMPH

Preliminary findings indicate a positive slope, prediction 
strength increasing as a function of transition probability

Prediction strength within each transition probability level

Overall slope (maroon) and individual subject slopes (grey), 
maroon band denotes 95% CI
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Here, we set out to replicate and extend the above results by 
using a wider range of transition probability values 

Hypothesis: higher activation of B in response to A for higher 
transition probabilities; moderate activation should lead to 
differentiation; strong activation should lead to integration.
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ROI: bilateral Hippocampus
N=12

Possibly 33% 100%

2

email: manoj.neuron@gmail.com

Using Probabilistic Transitions to 
Manipulate Memory Activations

Similarity to item B
Corr(Alearn, Bpre)

Baseline similarity to other items
Corr(Alearn, Bother)

Use Probabilistic Curve Induction and Testing (P-CIT) toolbox (Detre et al., 
2013) to continuously map between B activation to representational change


