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Abstract

Drawing is a powerful tool that can be used to convey rich perceptual information about objects in the

world. What are the neural mechanisms that enable us to produce a recognizable drawing of an object,

and how does this visual production experience influence how this object is represented in the brain? Here

we evaluate the hypothesis that producing and recognizing an object recruit a shared neural representation,

such that repeatedly drawing the object can enhance its perceptual discriminability in the brain. We scanned

human participants (N=31; 11 male) using fMRI across three phases of a training study: during training,

participants repeatedly drew two objects in an alternating sequence on an MR-compatible tablet; before

and after training, they viewed these and two other control objects, allowing us to measure the neural

representation of each object in visual cortex. We found that: (1) stimulus-evoked representations of objects

in visual cortex are recruited during visually cued production of drawings of these objects, even throughout

the period when the object cue is no longer present; (2) the object currently being drawn is prioritized

in visual cortex during drawing production, while other repeatedly drawn objects are suppressed; and (3)

patterns of connectivity between regions in occipital and parietal cortex supported enhanced decoding of the

currently drawn object across the training phase, suggesting a potential neural substrate for learning how to

transform perceptual representations into representational actions. Taken together, our study provides novel

insight into the functional relationship between visual production and recognition in the brain.

Keywords: drawing; ventral stream; objects; perception and action; fMRI
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Significance Statement1

Humans can produce simple line drawings that capture rich information about their perceptual experiences.2

However, the mechanisms that support this behavior are not well understood. Here we investigate how regions3

in visual cortex participate in the recognition of an object and the production of a drawing of it. We find that4

these regions carry diagnostic information about an object in a similar format both during recognition and5

production, and that practice drawing an object enhances transmission of information about it to downstream6

regions. Taken together, our study provides novel insight into the functional relationship between visual pro-7

duction and recognition in the brain.8

3



Introduction9

Although visual cognition is often studied by manipulating externally provided visual information, this ignores10

our ability to actively control how we engage with our visual environment. For example, people can select which11

information to encode by shifting their attention (Chun, Golomb, & Turk-Browne, 2011) and can convey which12

information was encoded by producing a drawing that highlights this information (Bainbridge, Hall, & Baker,13

2019; Draschkow, Wolfe, & Vo, 2014). Prior work has provided converging, albeit indirect, evidence that the14

ability to produce informative visual representations, which we term visual production, recruits general-purpose15

visual processing mechanisms that are also engaged during visual recognition (Fan, Yamins, & Turk-Browne,16

2018; James, 2017). The goal of this paper is twofold: first, to more directly characterize the functional role17

of visual processing mechanisms during visual production; and second, to investigate how repeated visual18

production influences neural representations that serve perception and action.19

With respect to the first goal, our study builds on prior studies that provided evidence for shared computa-20

tions supporting visual recognition and visual production. For example, recent work has found that activation21

patterns in human ventral visual stream measured using fMRI (Walther, Chai, Caddigan, Beck, & Li, 2011), as22

well as activation patterns in higher layers of deep convolutional neural network models of the ventral visual23

stream (Fan et al., 2018; Yamins et al., 2014), support linear decoding of abstract category information from24

drawings and color photographs. To what extent are these core visual processing mechanisms also recruited25

to produce a recognizable drawing of those objects? Initial insights bearing on this question have come from26

human neuroimaging studies investigating the production of handwritten symbols (though not drawings of real-27

world objects), revealing general engagement of visual regions during both letter production and recognition28

(Vinci-Booher, Cheng, & James, 2018; James & Gauthier, 2006). However, the format and content of the29

representations active in these regions during visual production is not yet well understood.30

With respect to the second goal, we build on prior work that has investigated the consequences of repeated31

visual production. In a recent behavioral study, participants who practiced drawing certain objects produced32

increasingly recognizable drawings and exhibited enhanced perceptual discrimination of morphs of those ob-33

jects, suggesting that production practice can refine the object representation used for both production and34

recognition (Fan et al., 2018). These findings resonate with other evidence that visual production can support35

learning, including maintenance of recently learned information (Wammes, Meade, & Fernandes, 2016) and36

enhanced recognition of novel symbols (Longcamp et al., 2008; James & Atwood, 2009; Li & James, 2016).37

Previous fMRI studies that have investigated the neural mechanisms underlying such learning have found en-38

hanced activation in visual cortex when viewing previously practiced letters (James & Gauthier, 2006; James,39
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2017), and increased connectivity between visual and parietal regions following handwriting experience (Vinci-40

Booher, James, & James, 2016). However, these studies have focused on univariate measures of BOLD signal41

amplitude within regions or when analyzing connectivity, raising the question of whether these changes reflect42

the recruitment of similar representations across tasks or of co-located but functionally distinct representations43

for each task.44

In the current study, we evaluate the hypothesis that producing and recognizing an object recruit a shared45

neural representation, such that repeatedly drawing the object can enhance its perceptual discriminability in the46

brain. Our approach advances prior work that has investigated the neural mechanisms underlying production47

and recognition in two ways: first, we analyze the pattern of activation across voxels to measure the expression48

and representation of object-specific information; second, we investigate production-related changes to the or-49

ganization of object representations, specifically changes in patterns of voxel-wise connectivity among ventral50

and dorsal visual regions as a consequence of production practice.51

Materials and Methods52

Participants53

Based on initial piloting, we developed a target sample size of 36 human participants, across whom all condition54

and object assignments would be fully counterbalanced. Participants were recruited from the Princeton, NJ55

community, were right-handed, and provided informed consent in accordance with the Princeton IRB. Of the56

39 participants who were recruited, 33 participants successfully completed the session. After accounting for57

technical issues during data acquisition (e.g., excessive head motion), data from 31 participants (11 male, 23.258

years) were retained.59

Stimuli60

Four objects from the furniture category were used in this study, based on a prior study (Fan et al., 2018): bed,61

bench, chair, and table. These objects were represented by 3D mesh models constructed in Autodesk Maya62

to contain the same number of vertices and the same brown surface texture, and thereby share similar visual63

properties apart than their shape (Fig. 1A). Each of these objects was rendered from a 10◦ viewing angle (i.e.,64

slightly above) at a fixed distance on a gray background in 40 viewpoints (i.e., each rotated by an additional 9◦65

about the vertical axis).66
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Figure 1: Stimuli, task, and experimental procedure. (A) Four 3D objects were used in this study: bed,

bench, chair, and table. Each participant was randomly assigned two of these objects to view and draw re-

peatedly (trained); the remaining two objects were viewed but never drawn (control). (B) Before and after

the production phase, participants viewed all objects while performing a 2AFC recognition task. (C) On each

trial of the recognition phase, one of the four objects was briefly presented (1000ms), followed by a 900ms

response window. On each trial of the production phase, one trained object was presented (3s), followed by an

35s drawing period (i.e., 23TRs).

Experimental Design67

Each participant was randomly assigned two of the four objects to practice drawing repeatedly (‘trained’ ob-68

jects). The remaining two objects (‘control’ objects) provided a baseline measure of changes in neural rep-69

resentations in the absence of drawing practice. At the beginning of each session and outside of the scanner,70

participants were familiarized with each of the four objects while being briefed on the overall experimental71

procedure. There were four phases in each session (Fig. 1 B&C), all of which were scanned with fMRI: initial72

recognition (two runs), pre-practice recognition (two runs), production practice (four runs), and a post-practice73

recognition phase (two runs).74
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Recognition task75

Within each of the three recognition phases, participants viewed all four objects in all 40 viewpoints once each76

and performed an object identification cover task. Repetitions of each object were divided evenly across the two77

runs of each phase, and in a random order within each run, interleaved with other objects. On each recognition78

trial, participants were first presented with one of the objects (1000ms). The object then disappeared, and two79

labels appeared below the image frame, one of which corresponded to the correct object label. Participants80

then made a speeded forced-choice judgment about which of the two objects they saw by pressing one of two81

buttons corresponding to each label within a 900ms response window. The assignment of labels to buttons was82

randomized across trials. Participants did not receive accuracy-related feedback, but received visual feedback83

if their response was successfully recorded within the response window (selected button highlighted). Inter-84

stimulus intervals (ISI) were jittered from trial to trial by sampling from the following durations, which appeared85

in a fixed proportion in each run to ensure equal run lengths: 3000ms ISI (40% trials/run), 4500ms (40%),86

6000ms (20%). Each run was 6 minutes in length, and no object appeared in the first or final 12s of each run.87

Production task88

Participants produced drawings on a pressure-sensitive MR-compatible drawing tablet (Hybridmojo) positioned89

on their lap by using an MR-compatible stylus, which they held like a pencil in the right hand. Before the first90

drawing run, participants were familiarized with the drawing interface. They practiced producing several closed91

curves approximately the size of the drawing canvas, to calibrate the magnitude of drawing movements on the92

tablet (which they could not directly view) to the length of strokes on the canvas. They also practiced drawing93

two other objects of their choice, providing them with experience drawing more complex shapes using this94

interface. When participants did not spontaneously generate their own objects to draw, they were prompted to95

draw a house and a bicycle.96

In each of the four runs of the production phase, participants drew both trained objects 5 times each in an97

alternating order, producing a total of 20 drawings of each object. Each production practice trial had a fixed98

length of 45s. First, participants were cued with one of the trained objects (3000ms). Following cue offset and99

a 1000ms delay, a blank drawing canvas of the same dimensions appeared in the same location. We refer to100

the trained object currently being drawn as the target object, and to the other trained object not currently being101

drawn as the foil object. Participants then used the subsequent 35s to produce a drawing of the object before the102

drawing was automatically submitted. Following drawing submission, the canvas was cleared and there was a103

6000ms delay until the presentation of the next object cue. Participants were cued with 20 distinct viewpoints104
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of each trained object in a random sequence (18◦ rotation between neighboring viewpoints), were instructed to105

to draw each target object in the same orientation as in the image cue, and did not receive performance-related106

feedback. Each run was 7.7 minutes in length and contained rest periods during the first 12s and final 45s of107

each run.108

109

Statistics110

We primarily employed non-parametric analysis techniques (i.e., bootstrap resampling) to estimate pa-111

rameters of interest (Efron & Tibshirani, 1994), and provide 95% confidence intervals for these parameter112

estimates. We favored this approach due to its emphasis on estimation of effect sizes, by contrast with the di-113

chotomous inferences yielded by traditional null-hypothesis significance tests (Cumming, 2014). Furthermore,114

all applications of logistic regression-based classification on fMRI data to derive these parameter estimates were115

conducted in a crossvalidated manner. Changes in classifier output over time were fit with linear mixed-effects116

regression models (Bates et al., 2015), which included random intercepts for different participants.117

fMRI data acquisition118

All fMRI data were collected on a 3T Siemens Skyra scanner with a 64-channel head coil. Functional images119

were obtained with a multiband echo-planar imaging (EPI) sequence (TR = 1500 ms, TE = 30 ms, flip angle120

= 70◦, acceleration factor = 4, voxel size = 2 mm isotropic), yielding 72 axial slices that provided whole-brain121

coverage. High resolution T1-weighted anatomical images were acquired with a magnetization-prepared rapid122

acquisition gradient echo (MPRAGE) sequence (TR = 2530 ms, TE = 3.30 ms, voxel size = 1 mm isotropic,123

176 slices, 7◦ flip angle).124

fMRI data preprocessing125

fMRI data were preprocessed with FSL (http://fsl.fmrib.ox.ac.uk). Functional volumes were corrected126

for slice acquisition time and head motion, high-pass filtered (100s period cutoff), and aligned to the middle vol-127

ume within each run. For each participant, these individual run-aligned functional volumes were then registered128

to the anatomical T1 image, using boundary-based registration. All participant-level analyses were performed129

in participants’ own native anatomical space. For group-level analyses and visualizations, functional volumes130

were projected into MNI standard space.131
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fMRI data analysis132

Head motion133

Given the distal wrist/hand motion required to produce drawings, it was important to measure and verify that134

there was not extreme head motion during drawing production relative to rest periods (i.e. cue presentation,135

and delay). For each production run, the time courses for estimated rotations, translations, and absolute/relative136

displacements were extracted from the output of MCFLIRT. Functional data were partitioned into production137

(i.e. the 23 TRs spent drawing in each TR) and rest (i.e., during cue presentation or delay between trials)138

volumes. We found that there was no difference in rotational movement between production and rest periods139

(mean = -0.0001; 95% CI = [-0.0003 0.0001]). In fact, there was reliably less head movement during production140

relative to rest, as measured by translation (mean = -0.006; 95% CI = [-0.011 -0.002]), absolute (mean = -0.027;141

95% CI = [-0.054 -0.004]) and relative displacement (mean = -0.016; 95% CI = [-0.024 -0.008]).142

Defining regions of interest in occipitotemporal cortex143

We focused our analyses on nine regions of interest (ROIs) in occipitotemporal cortex: V1, V2, lateral occipital144

cortex (LOC), fusiform (FUS), inferior temporal lobe (IT), parahippocampal cortex (PHC), perirhinal cortex145

(PRC), entorhinal cortex (EC), and hippocampus (HC). These regions were selected based on prior evidence146

for their functional involvement in visual processing. For instance, neurons in V1 and V2 are tuned to the147

orientation of perceived contours, which constitute simple line drawings and also often define the edges of an148

object (Hubel & Wiesel, 1968; Gegenfurtner, Kiper, & Fenstemaker, 1996; Kamitani & Tong, 2005; Sayim149

& Cavanagh, 2011). Likewise, neural populations in higher-level ventral regions, including LOC, FUS, and150

IT, have been shown to play an important role in representing more abstract invariant properties of objects151

(Grill-Spector, Kourtzi, & Kanwisher, 2001; Kourtzi & Kanwisher, 2001; Hung, Kreiman, Poggio, & DiCarlo,152

2005; Rust & DiCarlo, 2010; Gross, 1992); with medial temporal regions including PHC, PRC, EC, and HC153

participating in both online visual processing, as well as the formation of visual memories (Murray & Bussey,154

1999; Epstein, Graham, & Downing, 2003; Davachi, 2006; Schapiro, Kustner, & Turk-Browne, 2012; Garvert,155

Dolan, & Behrens, 2017). Masks for each ROI were defined in each participants’ T1 anatomical scan, using156

FreeSurfer segmentations (http://surfer.nmr.mgh.harvard.edu/).157
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Defining production-related regions in parietal cortex and precentral gyrus158

Motivated by prior work investigating visually-guided action (Vinci-Booher et al., 2018; Goodale & Milner,159

1992), we also sought to analyze how sensory information represented in occipital cortex is related to down-160

stream regions associated with action planning and execution, including parietal and motor cortex. Accordingly,161

ROI masks for parietal cortex and precentral gyrus were also generated for each participant based on their162

Freesurfer segmentation. To determine which voxels across the whole brain were specifically engaged during163

production, a group-level univariate activation map was estimated, contrasting production vs. rest. To derive164

these production task-related activation maps, we analyzed each production run with a general linear model165

(GLM). Regressors were specified for each trained object by convolving a boxcar function, reflecting the total166

amount of time spent drawing (i.e., 23 TRs, or 34.5 s), with a double-gamma hemodynamic response function167

(HRF). A univariate contrast was then applied, with equal weighting on the regressors for each trained object,168

to determine the clusters of voxels that were preferentially active during drawing production, relative to rest.169

Voxels that exceeded a strict threshold (Z = 3.1) and also lay within the anatomically defined ROI boundaries170

(i.e., in occipital cortex, parietal cortex, or precentral gyrus) were included.171

To avoid statistical dependence between this procedure used for voxel selection and for subsequent classifier-172

based analyses, we defined participant-specific activation maps in a leave-one-participant-out fashion. That is, a173

held out participant’s production mask was constructed based solely on the basis of task-related activations from174

all remaining participants. Once each participant’s mask was defined, we took the intersection between this map175

and the participant’s own anatomically defined cortical segmentation to construct the production-related ROIs176

in V1, V2, LOC, parietal cortex, and precentral gyrus). We had no a priori predictions about hemispheric177

differences, so ROI masks were collapsed over the left and right hemispheres.178

Measuring object evidence during recognition and production phases179

In order to quantify the expression of object-specific information throughout recognition and production, we180

analyzed the neural activation patterns across voxels associated with each object (Haxby et al., 2001; Kamitani181

& Tong, 2005; Norman, Polyn, Detre, & Haxby, 2006; Cohen et al., 2017). Specifically, we extracted neural182

activation patterns evoked by each object cue during recognition, measured 3 TRs following each stimulus offset183

to account for hemodynamic lag. We used these patterns to train a 4-way logistic regression classifier with L2184

regularization to predict the identity of the current object in either held-out recognition data or production data.185

This procedure was performed separately in each ROI in each participant, and all raw neural activation patterns186

were z-scored within voxel and within run prior to be used for either classifier training or evaluation.187
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To measure object evidence during recognition, we applied the classifier in a 2-fold crossvalidated fashion188

within each of the pre-production and post-production phases, such that for each fold, the data from one run189

were used as training, while the data from the other run were used for evaluation. Aggregating predictions190

across folds, we computed the proportion of recognition trials on which the classifier correctly identified the191

currently viewed object, providing a benchmark estimate of how much object-specific information was available192

from neural activation patterns during recognition. We constructed 95% confidence intervals (CIs) for estimates193

of decoding accuracy for each ROI by bootstrap resampling participants 10,000 times.194

To measure object evidence during production, we trained the same type of classifier exclusively on data195

from the initial recognition phase, which minimized statistical dependence on the classifier based on pre- and196

post-production phases. We then evaluated this classifier on every timepoint while participants produced their197

drawings, which consisted of the 23 TRs following the offset of the image cue, shifted forward 3 TRs to account198

for hemodynamic lag (Fig. 2).199

Because this type of classifier assigns a probability value to each object, it can be used to evaluate the200

strength of evidence for each object at each timepoint. To evaluate the degree to which the currently drawn201

object (target) was prioritized, we extracted the classifier probabilities assigned to the target, foil, and two202

control objects on each TR during drawing production. We then used these probabilities to derive metrics that203

quantify the relative evidence for one object compared to the others. Specifically, we define ‘target selection’204

as the log-odds ratio between the target and foil objects (ln[p(target)/p( f oil)]), which captures the degree to205

which the voxel pattern is more diagnostic of the target than the foil. We define ‘target evidence’ as the log-odds206

ratio between the target and the mean natural-log probabilities assigned to the two control objects for each time207

point, which captures the degree to which the voxel pattern is more diagnostic of the target than the baseline208

control objects. We likewise define ‘foil evidence’ as the log-odds ratio between the foil object and the mean209

natural log probabilities for the two control objects, which captures the degree to which the voxel pattern is210

more diagnostic of the foil than the baseline control objects. For each ROI within a participant, we compute the211

average target selection, target evidence, and foil evidence across time points in all four production runs, then212

aggregate these estimates across participants to compute a group-level estimate for each metric and CI derived213

via bootstrap resampling of participants 1000 times.214

Measuring object evidence in connectivity patterns during production phase215

The above approach to analyzing multivariate neural representations during production focuses on spatially216

distributed activation patterns within individual regions in visual cortex. However, visual production inherently217
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Figure 2: Measuring object evidence in activation patterns during recognition and production. (A) For

each participant, anatomical ROIs were defined using FreeSurfer. Activation patterns across voxels in each

ROI were extracted for each recognition trial and for all timepoints of each production trial. These activation

patterns can be expressed as vectors in a k-dimensional vector space, where k reflects the number of voxels in

a given ROI. (B) Evidence for each object was measured using a 4-way logistic regression classifier trained on

activation patterns from recognition runs to predict the current object being viewed or drawn (e.g., bed), and

discriminate it from the other three objects (i.e., bench, chair, table). This classifier can be used to measure

both the general expression of object-specific information, measured by classification accuracy, as well as the

degree of evidence for particular objects, measured by the probabilities it assigns to each. (C) To measure object

evidence during recognition, this classifier was trained in a run-wise crossvalidated manner within each of the

pre-production and post-production phases. To measure object evidence during production, the same type of

classifier was trained on data from the initial recognition phase.
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entails not only recruitment of individual regions, but also coordination between them. Practice producing218

drawings of an object may lead to changes in how information is shared between early sensory regions and219

downstream visuomotor regions. Such changes may reflect different ways that information in the visual repre-220

sentation of the object cue may be selected or transformed to guide action selection during drawing production.221

Because such coordination inherently involves multiple brain regions, we did not expect that it would be directly222

available in activation patterns within any given region. Accordingly, we developed an approach to explore how223

object-specific information might be shared between regions during drawing production. Specifically, because224

prior work has indicated that parietal and motor regions are also recruited during visual production (Vinci-225

Booher et al., 2018), we measured how activation patterns in visual cortex are related to activation patterns in226

these regions during drawing production.227

For each pair of ROIs (e.g., V1 and Parietal), we extracted the connectivity pattern from every production228

trial (Fig. 3). Each connectivity pattern consists of the m x n pairwise temporal correlations between every229

voxel in one ROI (containing m voxels) with every voxel in the second ROI (containing n voxels). The temporal230

correlation between each pair of voxels reflects the correlation between the activation timeseries for the first231

voxel and the activation timeseries for the second voxel, over all 23 TRs in each production trial.232

For each pair of ROIs, we then trained a 2-way logistic regression classifier to discriminate the target vs.233

foil objects based on these connectivity patterns. The classifier was trained in a run-wise crossvalidated manner234

within the first two runs (early) and the final two runs (late) of the production phase. To capture the degree to235

which the connectivity pattern was more diagnostic of the target than the foil, we computed target selection,236

which was averaged over all trials within a phase (early or late). With this approach, we computed connectivity237

over time within a trial, treating the connectivity matrix from each trial as an individual observation that was238

used to train the classifier, then compared the success of the classifier on other trials from the same half of the239

production phase to determine whether target selection increased from the first half to the second half.240

Data were fit with a linear mixed-effects regression model (Bates et al., 2015) that included time (early241

vs. late) as a predictor and random intercepts for different participants. We compared this model to a baseline242

model that did not include time as a predictor. The reliability of the increase in target selection across time243

was measured in two ways: first, formal model comparison to evaluate the extent to which including time as a244

predictor improved model fit; second, the construction of bootstrapped 95% CIs for estimates of the effect of245

time to evaluate whether they spanned zero (or chance). To further evaluate whether connectivity patterns car-246

ried task-related information that was not redundant with the activation patterns within regions, we conducted247

a control analysis which involved constructing the same type of classifier on voxel activation patterns extracted248

from two ROIs at a time, rather than the pattern of connectivity between them.249
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Figure 3: Measuring object evidence in connectivity patterns between regions during production. (A)

Voxels in each of several anatomical ROIs (i.e., V1, V2, LOC, Parietal, Precentral) that were also consistently

engaged during the production task were included in this analysis. To determine which voxels were consistently

engaged during production, while minimizing statistical dependence between voxel selection and multivoxel

pattern analysis, a production task-related activation map was generated in a leave-one-participant-out manner.

(B) Connectivity patterns were computed for each trial, for each pair of ROIs. Each connectivity pattern consists

of the set of m x n pairwise temporal correlations between every voxel in one ROI (containing m voxels) with

every voxel in the second ROI (containing n voxels). The temporal correlation between each pair of voxels

reflects the correlation between the activation timeseries for the first voxel and the activation timeseries for

the second voxel, over all 23 TRs in each production trial. (C) Connectivity patterns were used to construct

a 2-way logistic regression classifier to discriminate the currently drawn object (target) from the other trained

object (foil). This classifier was trained in a run-wise crossvalidated manner within the first two runs (early)

and the final two runs (late) of the production phase. (D) Target selection, the degree to which the target was

prioritized over the foil, was defined as the log-odds ratio between the target and foil objects.
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Results250

Discriminable object representations in visual cortex during recognition251

Following prior work (Haxby et al., 2001; Norman et al., 2006; Cichy, Chen, & Haynes, 2011; Cohen et al.,252

2017), we hypothesized that there would be consistent information about the identity of each object in visual253

cortex across repeated presentations during the recognition phase. Specifically, we predicted that the stimulus-254

evoked pattern of neural activity across voxels in visual cortex upon viewing an object could be used to reliably255

decode its identity. To test this prediction, we first extracted neural activation patterns evoked by each object256

during recognition separately for each participant, in each occipitotemporal ROI. We used neural activation257

patterns extracted from a subset of recognition-phase data to train a 4-way logistic regression classifier that258

could be used to evaluate decoding accuracy on held-out recognition data in the same regions (Fig. 2). We259

computed a 2-fold crossvalidated measure of object decoding accuracy (Fig. 4), wherein for each of the pre-260

production and post-production phases, the 40 repetitions from one of the two runs were used for training the261

classifier, while the 40 repetitions from the other run were used for evaluation.262

We found that the identity of the currently viewed object could be reliably decoded in V1, V2, and LOC263

in the pre-production recognition phase (95% CIs: V1 = [.332 .370], V2 = [.332 .374], LOC = [.299 .324];264

chance=.25; Fig. 4), but not in the more anterior ROIs (95% CIs: FUS = [.236 .266], PHC = [.248 .280], IT =265

[.245 .272], ENT = [.246 .268], PRC = [.237 .264], HC = [.241 .263]). Likewise, we found that the same early266

visual regions, as well as PHC, supported above-chance decoding during the post-production phase (95% CIs:267

V1 = [.327 .374], V2 = [.337 .379], LOC = [.296 .329], PHC = [.255 .286]), but not the other regions (95% CIs:268

FUS = [.244 .275], IT = [.242 .268], ENT = [.238 .268], PRC = [.227 .258], HC = [.232 .259]). These results269

suggest that information about object identity was not uniformly accessible from all regions along the ventral270

stream, but primarily in occipital cortex, consistent with previous work (Grill-Spector et al., 2001; Güçlü & van271

Gerven, 2015).272

Similar object representations in visual cortex during recognition and production273

The results so far show that there is robust object-specific information evoked by visual recognition of each274

object in the patterns of neural activity in V1, V2, and LOC. Based on prior work (Fan et al., 2018), we further275

hypothesized that the neural object representation evoked during recognition would be functionally similar to276

that recruited during drawing production. Specifically, we predicted that consistency in the patterns of neural277

activity evoked in visual cortex upon viewing an object could be leveraged to decode the identity of that object278
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Figure 4: Accuracy of object classifier during pre/post recognition phase and drawing production phase, for

each ventral visual region of interest. Error bars reflect 95% CIs.

during drawing production, even during the period when the object cue was no longer visible. To test this279

prediction, we evaluated how well a linear classifier trained exclusively on recognition data to decode object280

identity could generalize to production data in the same regions.281

For each ROI in each participant, we used activation patterns evoked by each object across 40 repetitions282

in two initial recognition runs to train a 4-way logistic regression classifier, which we then applied to each283

timepoint across the four production practice runs. Critically, we restricted our classifier-based evaluation of284

production data to the 23 TRs following the offset of the object cue in each trial, providing a measure of the285

degree to which object-specific information was available in each ROI during production throughout the period286

when the object was no longer visible. Moreover, we ensured that the data used to train this classifier came287

from different runs than those used to measure the expression of object-specific information in these regions288

during the pre- and post-production recognition phases. Averaging over all TRs during production, we found289

reliable decoding of object identity in V1 (mean = 0.3; 95% CI = [0.280 0.320], chance = .25, Fig. 4), V2 (mean290

= 0.305; 95% CI = [0.281 0.331]), and LOC (mean = 0.283; 95% CI = [0.267 0.299]), though not in the more291

anterior ROIs (95% CIs: FUS = [0.241 0.268], PHC = [0.244 0.275], IT = [0.245 0.261], EC = [0.241 0.259],292

PRC = [0.246 0.262], HC = [0.241 0.258]; Fig. 4).293

These results suggest that despite large differences between the two tasks — that is, visual discrimination294

of a realistic rendering vs. production of a simple sketch based on object information in working memory —295

there are functional similarities between the visually-evoked representation of objects in occipital cortex (i.e.,296

V1, V2, LOC) and the representation that is recruited during the production of drawings of these objects.297
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Sustained selection of target object during production in visual cortex298

The findings so far show that the identity of the currently drawn object can be linearly decoded from voxel ac-299

tivation patterns in occipital cortex during drawing production. While this speaks to the overall prioritization of300

the currently drawn target object in visual cortex, it is unclear whether this prioritization is specific to the target.301

On the one hand, it may be that both trained objects were activated to a similar and heightened degree during302

the production phase relative to the control objects, because participants alternated between these objects. On303

the other hand, this alternation may have led participants to selectively prioritize the target object, resulting in304

the foil object not only being less activated than the target, but also suppressed relative to the control objects.305

To tease these possibilities apart, we quantified the relative evidence for each object on every time point during306

drawing production, in each ventral stream ROI (Fig. 5).307

We found sustained target evidence (target > control) across the production phase in V1 (mean = 0.228;308

95% CI = [0.102 0.361]), V2 (mean = 0.227; 95% CI = [0.094 0.360]), and LOC (mean = 0.128; 95% CI =309

[0.035 0.231]), consistent with the classifier accuracy results reported above. We did not find reliable evidence310

for sustained target evidence in the other ROIs (95% CIs: FUS = [-0.025 0.222], PHC = [-0.067 0.056], IT =311

[-0.163 0.026], EC = [-0.113 0.020], PRC = [-0.103 0.018], HC = [-0.047 0.062]).312

We also found reliable negative foil evidence (foil < control) across the production phase again in V1313

(mean = -0.449; 95% CI = [-0.601 -0.295]), V2 (mean=-0.481; 95% CI = [-0.701 -0.261]), and LOC (mean314

= -0.188; 95% CI = [-0.277 -0.095]), suggesting that not only is the task-relevant target object prioritized in315

these regions, but also that the presently task-irrelevant foil object is suppressed. Again, we did not find reliable316

evidence for sustained foil evidence (in either direction) in the other ROIs (95% CIs: FUS = [-0.170 0.067],317

PHC = [-0.030 0.072], IT = [-0.154 0.06], EC = [-0.119 0.013], PRC = [-0.05 0.056], HC = [-0.064 0.051]).318

Finally, we found sustained target selection (target > foil) across the production phase again in V1 (mean319

= 0.676; 95% CI = [0.449 0.906]), V2 (mean = 0.708; 95% CI = [0.484 0.955]), LOC (mean = 0.316; 95%320

CI = [0.216 0.423]), and additionally in FUS (mean = 0.151; 95% CI = [0.074 0.229]). Again, we did not321

find reliable evidence for sustained target selection in the other ventral stream ROIs (95% CIs: PHC = [-0.081322

0.0262], IT = [-0.098 0.056], EC = [-0.053 0.063], PRC = [-0.112 0.022], HC = [-0.041 0.068]).323

Overall, these results show that the currently drawn object was selectively prioritized in occipital cortex,324

relative to both never-drawn control objects and the other trained object, which was reliably suppressed below325

the control-object baseline throughout the production phase.326

A related question raised by these findings concerns the degree to which object decodability during draw-327

ing production was driven by active recruitment of an internal object representation or by sensory exposure to328
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Figure 5: Classifier evidence for each object over time during production, trained on recognition acti-

vation patterns. (A) Classifier evidence for target (currently drawn), foil (other trained), and control (never

drawn) objects across repetitions during production phase in V1, V2, LOC, and FUS, averaging over TR within

trial. (B) Classifier evidence for each object by TR within trial in the same regions, averaging over trials.

Probabilities assigned by a 4-way logistic regression classifier trained on patterns of neural responses evoked

during initial recognition of these objects. Shaded regions reflect 95% confidence bands.
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the finished drawing. Our current data provide some support for the contribution of both sources: First, we329

observe reliable target evidence and negative foil evidence both at early timepoints and throughout each pro-330

duction trial, especially in regions where target selection is most pronounced (i.e., V1 and V2). Such sustained331

selection is suggestive of an active internal prioritization of the target object, accompanied by suppression of332

the foil object (Fig. 5B). Second, we observe a steady increase in target evidence throughout the period of333

each production trial when participants were most actively engaged in drawing. It is during this period that334

participants were exposed to increasing sensory evidence for the target object, provided by the increasingly335

recognizable drawing they were producing.336

Taken together, these findings suggest the operation of a selection mechanism during drawing production337

that simultaneously enhances the currently relevant target object representation and suppresses the currently338

irrelevant foil object representation in early visual cortex, potentially involving mechanisms similar to those339

supporting selective attention and working memory (Tipper, Weaver, & Houghton, 1994; Serences, Ester, Vogel,340

& Awh, 2009; Gazzaley & Nobre, 2012; Lewis-Peacock & Postle, 2012; Fan & Turk-Browne, 2013).341

Stable object representations in activation patterns in visual cortex342

Because we collected neural responses to each object both before and after the production phase, we could343

also evaluate the consequences of repeatedly drawing an object on the discriminability of neural activation344

patterns associated with each object in these regions. Insofar as repeatedly drawing the trained objects led to345

more discriminable representations of those objects within each region, we hypothesized that trained object346

representations would become more differentiated following training, resulting in enhanced object decoding347

accuracy in the post-production phase relative to the pre-production phase, especially for trained objects. To test348

this hypothesis, we analyzed changes using a linear mixed-effects model with phase (pre vs. post) and condition349

(trained vs. control) as predictors of decoding accuracy, with random intercepts for each participant. We did350

not find evidence that objects differed in discriminability between the pre- and post-production recognition351

phases in any ROI (i.e., no main effect of phase; ps > .225), nor evidence for larger changes in discriminability352

for trained vs. control objects (i.e., no phase by condition interaction ps > .135). These results suggest that353

stimulus-evoked neural activation patterns in occipital cortex were stable under the current manipulation of354

visual production experience.355
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Enhanced object evidence in connectivity patterns across occipitotemporal and parietal regions356

Drawing is a complex visuomotor behavior, involving the concurrent recruitment of occipitotemporal cortex,357

as well as downstream parietal and motor regions (Vinci-Booher et al., 2018). In agreement with prior work,358

we found consistent engagement in voxels within V1, V2, LOC, parietal cortex, and precentral gyrus during359

drawing production relative to rest, as measured by a univariate contrast (see Methods). We asked whether360

this joint engagement may reflect, at least in part, the transmission of object-specific information among these361

regions. If so, then learning to draw an object across repeated attempts may lead to enhanced transmission of362

the diagnostic features of the object. To explore whether there was enhanced transmission of object-specific in-363

formation, we investigated connectivity patterns between voxels in V1, V2, LOC, parietal cortex, and precentral364

gyrus engaged during the production task.365

Specifically, using the entire 23-TR time course of a given trial, we computed a voxel-wise connectivity366

matrix for each pair of these ROIs. Each trial’s connectivity matrix was then used as input to a binary logistic367

regression classifier, trained with L2 regularization to predict object identity separately in each half of the368

production phase. For each test trial, the classifier yielded two probability values corresponding to the amount369

of evidence for the target and foil objects. As in the previous analysis, we computed a target selection log-odds370

ratio, this time for each test trial and for each participant in every pair of ROIs. The trials were then divided371

based on whether they were early (runs 1 and 2) or late (runs 3 and 4) in the production phase. We then analyzed372

changes in target selection as a function of half using a linear mixed-effects model with random intercepts for373

each participant. This analysis revealed the extent to which patterns of connectivity between regions during374

each drawing trial became more diagnostic of object identity over time.375

When analyzing changes in connectivity patterns between V1 and V2, we found that including time as a376

predictor improved model fit, χ2(1) = 9.078, p = 0.0026, βtime = 0.473, 95% CI = [0.208 0.769]. We found a377

similar pattern of results for V1/LOC (χ2(1) = 9.301, p = 0.0023, βtime = 0.456, 95% CI = [0.166 0.720]), for378

V1/Parietal (χ2(1) = 7.254, p = 0.0071, βtime = 0.409; 95% CI = [0.078 0.723]), for V2/LOC (χ2(1) = 6.775,379

p = 0.0092, βtime = 0.388; 95% CI = [0.073 0.701]), and modestly for V2/Parietal (χ2(1) = 4.293, p = 0.038,380

βtime = 0.304; 95% CI = [0.024 0.580]) We also analyzed changes in the connectivity pattern for LOC/Parietal,381

but did not find evidence of reliable changes over time (χ2(1) = 1.01, p = 0.3151, βtime = 0.141; 95% CI =382

[-0.152 0.407]). We found similar null results when analyzing changes in the connectivity pattern between V1383

and Precentral (i.e., motor cortex), χ2(1) = 1.294, p = 0.255, βtime = 0.156, 95% CI = [-0.112 0.413], V2 and384

Precentral (χ2(1) = 1.541, p = 0.214, βtime = 0.164, 95% CI = [-0.092 0.446]), LOC and Precentral (χ2(1) =385
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Figure 6: Target selection over time during production, trained on connectivity patterns between pairs of

regions. Target selection measured using connectivity patterns in production-related voxels in V1, V2, LOC,

parietal cortex, and precentral gyrus. Error bars reflect 95% CIs.

0.166, p = 0.683, βtime = 0.055; 95% CI = [-0.253 0.337]), and Parietal and Precentral (χ2(1) = 0.257, p = 0.612,386

βtime = 0.069; 95% CI = [-0.201 0.354]).387

Overall, these results suggest that repeated drawing practice may lead to enhanced transmission of object-388

specific information between regions in occipital and parietal cortex over time (i.e. from early to late in pro-389

duction phase, Fig. 6).390

Enhanced object evidence not found in activation patterns within regions391

The foregoing connectivity analyses were based on voxels from pairs of ROIs. Thus it may have been the case392

that simply combining information about voxel activity from two regions would have been sufficient to uncover393

learning effects that were masked when regions were considered individually. If true, then concatenating voxel394

activation patterns from two ROIs should also reveal changes in target information over time. To test this395
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possibility directly, we constructed the same type of classifier on the concatenated voxel activation patterns396

extracted from each ROI, rather than their connectivity patterns.397

By contrast with decoding from connectivity patterns, we found that when using concatenated activation398

patterns from V1 and V2, including time as a predictor did not improve model fit, χ2(1) = 0.075, p = 0.784,399

and time did not predict target selection, βtime = -0.030, 95% CI = [-0.257 0.181]). There were similarly null400

effects for concatenated V1/LOC (χ2(1) = 0.690, p = 0.406, βtime = 0.092, 95% CI = -0.126 0.302), V1/Parietal401

(χ2(1)=0.203, p = 0.652, βtime = -0.054, 95% CI = [-0.315 0.180]), V2/LOC (χ2(1) = 0.274, p = 0.601, βtime402

= 0.059, 95% CI = [-0.171 0.273]), V2/Parietal (χ2(1) = 0.301, p = 0.583, βtime = -0.066, 95% CI = [-0.315403

0.158]), and LOC/Parietal (χ2(1) = 0.000, p = 0.988, βtime = -0.002, 95% CI = [-0.246 0.251]).404

Taken together, these results suggest that connectivity patterns between regions carry task-related informa-405

tion about the target object that was not redundant with information directly accessible from activation patterns406

within regions. A possibility consistent with these findings is that enhanced target information in patterns407

of connectivity between occipitotemporal and parietal regions may reflect increasing ability to emphasize the408

diagnostic features of an object across repeated attempts to transform their perceptual representation of the409

object into an effective motor plan to draw it. This interpretation would be consistent with prior studies using410

a similar paradigm that have shown improvement in the recognizability of drawings across repetitions (Fan et411

al., 2018; Hawkins, Sano, Goodman, & Fan, 2019). More broadly, our analyses present a general approach412

to quantifying how multivariate patterns of connectivity between regions change during repeated practice of413

complex visually guided actions, including visual production (Vinci-Booher et al., 2016).414

Discussion415

The current study investigated the functional relationship between recognition and production of objects in416

human visual cortex. Moreover, we aimed to characterize the consequences of repeated production on the417

discriminability of object representations. To this end, we scanned participants using fMRI while they per-418

formed both recognition and production of the same set of objects. During the production task, they repeatedly419

produced drawings of two objects. During the recognition task, they repeatedly discriminated the repeatedly420

drawn objects, as well as a pair of other control objects. We measured spatial patterns of voxel activations in421

ventral visual stream during drawing production and found that regions in occipital cortex carried diagnostic422

information about the identity of the currently drawn object that was similar in format to the pattern evoked423

during visual recognition of a realistic rendering of that object. Moreover, we found that these production-424

related activation patterns reflected sustained prioritization of the currently drawn object in visual cortex and425
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concurrent suppression of the other repeatedly drawn object, suggesting that visual production recruits an in-426

ternal representation of the current object to be drawn that emphasizes its diagnostic features. Finally, we427

found that patterns of functional connectivity between voxels in occipital cortex and parietal cortex supported428

progressively better decoding of the currently drawn object across the production phase, suggesting a potential429

neural substrate for production-related learning. Taken together, these findings contribute to our understanding430

of the neural mechanisms underlying complex behaviors that require the engagement of and interaction between431

regions supporting perception and action in the brain.432

Our findings advance an emerging literature on the neural correlates of visually cued drawing behavior.433

The studies that comprise this literature have employed widely varying protocols for cueing and collecting434

drawing data. For example, one early study briefly presented watercolor images of objects as visual cues,435

and instructed participants to use their right index finger, which lay by their side and out of view, to ‘draw’436

the object in the air (Makuuchi, Kaminaga, & Sugishita, 2003). Another study used cartoon images of faces437

and had participants produce their drawings on a paper-based drawing pad, also hidden from view (Miall,438

Gowen, & Tchalenko, 2009). More recently however, MR-compatible digital tablets have enabled researchers439

to automatically capture natural drawing behavior in a digital format while participants are concurrently scanned440

using fMRI. In one such study, participants copied geometric patterns (i.e., spiral, zigzag, serpentine), which441

were then projected onto a separate digital display (Yuan & Brown, 2014), while another had participants copy442

line drawings of basic objects, but participants were unable to view the strokes they had created (Planton,443

Longcamp, Péran, Demonet, & Jucla, 2017).444

Unlike the way people produce drawings in everyday life, participants in these studies generally did not445

receive visual feedback about the perceptual properties of their drawing while producing it (cf. Yuan & Brown,446

2014), and were cued to produce simple abstract shapes rather than real-world objects. By contrast, in the447

current study we employed photorealistic renderings of 3D objects as visual cues and gave participants contin-448

uous visual access to their drawing while producing it. Using photorealistic object stimuli rather than geometric449

patterns or pre-existing line drawings of objects allowed us to interrogate the functional relationship between the450

perceptual representations formed during visual recognition of real-world objects and those that are recruited451

online to facilitate drawing production. Moreover, participants in our study received immediate visual feedback452

about the perceptual properties of their drawing while producing it, allowing us to investigate distinctive aspects453

of drawing behavior that are not shared with other depictive actions (e.g., gesture) that do not leave persistent454

visible traces.455

Previous studies were also primarily concerned with characterizing overall differences in BOLD signal456

amplitude between a visually cued drawing and another baseline visual task (i.e., object naming, subtraction457
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of two visually presented numbers). The current study diverges from prior work in its use of machine learning458

techniques to analyze the expression of object-diagnostic information within visual cortex, as well as in the459

pattern of connections to downstream parietal regions. As a consequence, our study helps to elucidate the460

neural content and circuitry that underlie visual production behavior.461

The current findings are generally consistent with prior work in observing broad recruitment of a network462

of regions during visually guided drawing production, including regions in the ventral stream and in parietal463

cortex. Moreover, our findings are congruent with a growing body of evidence showing a large degree of464

functional overlap in the network of regions during the perception and production of abstract symbols (James,465

2017; James & Gauthier, 2006), as well as overlap between regions recruited during production of symbols and466

object drawings (Planton et al., 2017). This convergence suggests that common functional principles (Lake,467

Salakhutdinov, & Tenenbaum, 2015), if not identical neural mechanisms, may underlie fluent perception and468

production of symbols and object drawings, in particular the recruitment of representations in visual cortex469

and computations in parietal cortex that are thought to transform perceptual representations into actions (Vinci-470

Booher et al., 2018).471

Interestingly, the most robust information about which object participants were currently drawing was472

available in occipital cortex. These results are largely consistent with prior work that has found functional473

overlap between neural representations of perceptual information and information in visual working memory474

(Sprague, Ester, & Serences, 2014; Harrison & Tong, 2009) and visual imagery (Dijkstra, Bosch, & van Ger-475

ven, 2017; Kosslyn, Ganis, & Thompson, 2001). Thus a natural implication for our understanding of the neural476

mechanisms underlying visual production is that mechanisms supporting visual working memory and visual477

imagery in sensory cortex are also recruited during production of a drawing of an object held in working mem-478

ory. Further, these mechanisms may have provided the basis for our ability to decode the identity of the target479

object during drawing production. ¡¡¡¡¡¡¡ HEAD A potential alternative explanation for above-chance decoding480

of object identity in visual cortex could be that participants made consistent eye movements in response to the481

object when presented as a cue in the production runs or as an image in the recognition runs. This explanation482

seems unlikely for a few reasons: First, objects were presented briefly and centrally during recognition runs,483

reducing the need and time available for object-specific eye movements. Second, objects were depicted from484

a trial-unique viewpoint during both recognition and production runs, ensuring variation in the retinal input485

across repeated presentations of the same object, and thus the patterns of eye movements made in response.486

Third, in the production runs participants were instructed to draw the object as it was displayed in the cue,487

which meant that their drawings and associated eye movements also reflected viewpoint variability. =======488
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A potential alternative explanation for above-chance decoding of object identity in occipital cortex could489

be that participants made consistent eye movements in response to the object when presented as a cue in the pro-490

duction runs or as an image in the recognition runs. However, this explanation seems unlikely for a few reasons:491

First, objects were presented briefly and centrally during recognition runs, reducing the need and time available492

for object-specific eye movements. Second, objects were displayed from a trial-unique viewpoint during both493

recognition and production runs, ensuring variation in the retinal input across repeated presentations of the same494

object, and thus the patterns of eye movements made in response. Third, participants were instructed to draw495

the object as it was displayed in the cue during production runs, which meant that their drawings and associated496

eye movements also reflected viewpoint variability. ¿¿¿¿¿¿¿ 6b992c1c71a1df7216e981f2e46c06f3b9acdf90497

While the current study was focused on learning-related consequences of visual production practice, other498

learning studies that have employed different tasks, including categorization training (Jiang et al., 2007), as-499

sociative memory retrieval (Favila, Chanales, & Kuhl, 2016), spatial route learning (Chanales, Oza, Favila, &500

Kuhl, 2017), and statistical learning (Schapiro et al., 2012), have found that repeated engagement with similar501

items can lead to their differentiation in the brain. Although we did not find that trained object representa-502

tions became more differentiated within our ROIs, we discovered in exploratory analyses that the pattern of503

connectivity between occipital and parietal regions during drawing production carried increasingly diagnostic504

information about the target object across the production phase. Our current findings suggest that while ac-505

tivation patterns evoked by objects within subregions of occipital cortex may not differentiate as a result of506

repeated production, that the manner in which this information is transmitted between occipital and parietal507

regions might. Further investigation of how perceptual information represented in visual cortex is transformed508

into motor commands issued by downstream regions, including motor cortex, is a clear and important direction509

for future research (Russo et al., 2018; Churchland et al., 2012). It is plausible that some visual properties may510

map selectively onto specific motor plans such that otherwise similar stimuli may lead to increasingly different511

actions as participants learn to emphasize the visual properties of an object that distinguish it from other objects512

in their drawings. We did not find evidence for such changes in linear transformations between visual and motor513

cortex (Fig. 6-1), but future work could examine non-linear transformations (Anzellotti & Coutanche, 2018) or514

better ways to characterize motor representations and learning (Berlot, Popp, & Diedrichsen, 2018).515

Taken together, our findings contribute support for the notion that one route by which learning may occur516

during visual production is by enhancing the discriminability between the neural representations of repeatedly517

practiced items, and these representations may be measured as the pattern of activations across voxels within518

a region, as well as pattern of connectivity between voxels between regions (“Full correlation matrix anal-519

ysis (FCMA): An unbiased method for task-related functional connectivity, author=Wang, Yida and Cohen,520

25



Jonathan D and Li, Kai and Turk-Browne, Nicholas B, journal=Journal of neuroscience methods, volume=251,521

pages=108–119, year=2015, publisher=Elsevier”, n.d.). In the long run, further application of such multi-522

variate analysis approaches to neural data collected during visual production may shed new light not only on523

the representation of task-relevant information in sensory cortex, but also how this information is transmitted524

to downstream parietal and frontal regions that support the planning and execution of complex motor plans525

(James, 2017; Goodale & Milner, 1992).526
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