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Abstract
Expectations can inform fast, accurate decisions. But what informs expectations? Here we test the hypothesis that expectations
are set by dynamic inference frommemory. Participants performed a cue-guided perceptual decision task with independently-
varying memory and sensory evidence. Cues established expectations by reminding participants of past stimulus-stimulus
pairings, which predicted the likely target in a subsequent noisy image stream. Participant’s responses used both memory and
sensory information, in accordance to their relative reliability. Formal model comparison showed that the sensory inference
was best explained when its parameters were set dynamically at each trial by evidence sampled from memory. Supporting
this model, neural pattern analysis revealed that responses to the probe were modulated by the specific content and fidelity
of memory reinstatement that occurred before the probe appeared. Together, these results suggest that perceptual decisions
arise from the continuous sampling of memory and sensory evidence.

Keywords Perceptual decisions · Sequential sampling · Memory

Laboratory studies of decision-making tend to focus on
choices made on the basis of a single kind of information –
such as anticipated utility (Rangel et al., 2008), sensory input
(Gold and Shadlen, 2007), or mnemonic evidence (Ratcliff,
1978; Gordon et al., 2013) – taken alone. But in the real
world, our decisions depend on integrating information avail-
able from many sources – both external, such as visual, and
internal, such as our memories.
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For instance, when traveling on an unfamiliar train route,
I might miss my intended stop. How do I figure out where to
make the transfer to get back on my desired route? I could
rely solely on sight – as the train stops at each station, quickly
scan the platform for helpful signs or markings. I could rely
solely on my memories – which station is next? Will it have
the transfer I need? Both kinds of information can be unre-
liable: station platforms may look very similar, with distant
or unhelpful signage, and my memories of the sequence of
stations could be sparse or inconsistent (for instance, due
to past detours). More likely, I will combine both kinds of
information: query mymemories about which stations might
have transfers, and combine those with what I can see from
a quick look out the door at each stop. By combining what I
remember with what I see, I can improve my ability to figure
out where I am – and, thus, what actions I should take.

A similar and open question in the laboratory study of
perceptual decisions is how expectations should, and do,
influence the inference process.Within the canonical sequen-
tial sampling framework (Ratcliff, 1978; Gold and Shadlen,
2007), expectations can be encoded as a change to either
the starting point of the inference process, or the rate at
which evidence is sampled (van Ravenzwaaij et al., 2012;
Drugowitsch et al., 2012; Moran, 2015; Van Ravenzwaaij
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et al., 2015; Perugini et al., 2016; Perugini and Basso, 2017).
Another, related idea is that expectations can dynamically
impact both the rate and direction of sampling, with increas-
ing influence as a decision takes longer to resolve (Hanks
et al., 2011). However, all of these approaches assume that
the content of expectations is fixed before the decision starts,
whether by learning or by instruction. In the train analogy,
the map is known with certainty, though the reliability of the
visual cues vary (trial to trial).

Extensive work supports the idea that people query
associative memory as an informative, though potentially
unreliable, source of informationfor action selection(Biderman
et al., 2020). Specifically, it has been shown that choice pat-
terns and response time distributions during timed memory
retrieval tasks are well-matched by the predictions of the
drift-diffusion model (DDM; Ratcliff 1978), and that deci-
sions can be made on the basis of sampled memories, similar
to the way in which samples of visual input are used to guide
perceptual decisions (Bornstein and Daw, 2013; Shadlen
and Shohamy, 2016; Bornstein et al., 2017; Bornstein and
Norman, 2017; Bakkour et al., 2019). Further, hippocampal
activity, as measured using fMRI, during decision-making
appears to scalewith the uncertainty of next-step associations
(Bornstein and Daw, 2012, 2013). This finding concords
with a broad literature supporting the involvement of the
MTL, long associated with memory encoding and retrieval,
in perceptual decisions (Graham et al., 2010). Building on
these results, we test the hypothesis that, during a cue-guided
perceptual decision task, both types of evidence sampling
occur as a single, continuous, inference process, with actions
selected on the basis of the combined evidence.

Our hypothesis yields two main predictions. First, evi-
dence sampling in such a task should begin before the onset
of sensory information, with dynamics that change when the
probe is presented. Specifically, before the probe, sampling
should reflect the contents of memory retrieval and its con-
sistency; after, the rate of sampling should be influenced by
the coherence and content of visual information. Second,
the hypothesis predicts that the sampling process is integra-
tive across modalities. Specifically, decisions made after the
onset of the probe should reflect the content and consistency
of memories retrieved before the onset of the probe – that is,
to the degree that the retrieved memories concord with visual
samples, then the decision should be faster (and, conversely,
when they disagree, responses should be slowed).

To test these predictions, we developed a memory-guided
perceptual inference task. In the task, two distinct kinds of
information – memory and sensory – indicated the correct
response for that trial, and were made available at separate
times. First, participants learned, by experience, a small set
of cue-photograph pairs. Fractal cues were followed in quick
succession by one of two face or house photographs, one
more often than the other. Then, in the main phase of the

task, these cues were used to establish expectations for a sen-
sory decision. Specifically, a fractal cue triggered memories
of the (face or scene) photographs that had been previously
observed to follow in time. These memories served as evi-
dence about the likely identity and reliability of a subsequent
noisy visual probe stimulus – a rapidly alternating stream
of photographs, one of which was the one predicted by the
cue. Critically, participants could choose to respond at any
time, including before the probe appeared. Therefore, their
responses could reflect the influence of memory or sensory
information alone, or some combination of the two.

We formalized our predictions using amulti-stage sequen-
tial sampling model that allows for dynamic changes in
the rate – and, by implication, the content – of sampling
(Sullivan et al., 2015; Srivastava et al., 2016; Lombardi and
Hare, 2021). In our task, the first stage of the model samples
evidence frommemories triggeredby the fractal cue. The sec-
ond stage carries forward the evidence sampled during stage
one, while incorporating new samples, this time visual input
from the noisy probe. This approach differs from previous
models of expectation-guided perceptual inference in that
it constructs expectations dynamically for each trial, using
the cue to effectively anticipate the content of the probe. As
a result, what the model “expects” will vary between deci-
sions, depending on what evidence was sampled during the
first stage.

Experiment 1 is a behavioral study that tests the first pre-
diction of the model: that choices and response times in the
task reflect a continuous inference process in which the rate
of sampling changes with the onset of visual information.
We fit our model to these data, and contrast its fit with that of
non-continuous alternative models. Experiment 2 is an fMRI
study that tests the second prediction: that evidence sampling
frommemory is itself a dynamical process, that evolves over
the period prior to presentation of the cue, and the result of
which is carried forward and affects the sensory inference
process. We used Multivariate Pattern Analysis (MVPA) to
measure, on a trial-by-trial basis, neural signatures of the
degree and content of memory samples, and test their rela-
tionship to responses made after the onset of the flickering
probe.

Taken together, the results of these experiments provide a
new account of perceptual decisions, by demonstrating a crit-
ical role for integrated, dynamic inference from mnemonic,
as well as sensory, information.

Results

Participants performed a cue-guided perceptual inference
task (Fig. 1), in which fractal cues could be used to antici-
pate the content and coherence of a noisy probe stimulus that
appeared after a short, variable-length delay (Fig. 1b) The
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Fig. 1 Cue-guided perceptual inference task. a In the Sequence
learning phase, participants saw a series of 100 cue-target pairings.
Each fractal cue was shown 25 times, randomly interleaved, and at
each presentation followed by a target picture of either a face or a
scene. They were told only to press the key associated with the tar-
get photograph, once it appeared. Cues were followed by photographs
from one category only, and to each of the two pictures within that cat-
egory according to complementary proportions (50%/50%, 60%/40%,
70%/30%, 80%/20%). This set of experiences of cue-target pairings
provided associative memory traces that served as evidence samples
for the task in Test phase. b In the Test phase, participants were again
shown a fractal cue, but in this case the cue was followed by a “flick-
ering” series of rapidly alternating pictures. Each frame of the series
contained one of the two pictures from the cued category, or a phase-

scrambled superposition of the two pictures. One picture, the target,
was shown in the stream more often than the other. Participants were
asked to respond by pressing the key associated with the target picture
– critically, they could respond at any time after the onset of the fractal
cue. In each block, each category was associated with a particular level
of cue predictiveness, and flickering stimuli were either of high or low
coherence – therefore, the fractal cue signaled the reliability of both
memory and sensory evidence on that trial. c The flickering probe stim-
ulus was calibrated to one of two levels of difficulty. In an earlier phase
of the task, a staircasing procedure was used to determine the proportion
of frames that would elicit either higher (85%) or lower (65%) accuracy
on a neutral-prior (50/50) version of the flickering task. In this way, the
flickering stream parametrically varied the weight of visual evidence
favoring the target
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task encouraged participants to rely on evidence from mem-
ories, triggered by fractal cues, that could be consulted during
the anticipation delay, and, after the delay, from a noisy
visual probe: a stream of rapidly alternating photographs
“flickering” at one of two levels of coherence (Fig. 1c). The
participant’s task was to press the key corresponding to the
photograph that was most often present in the flickering
probe. This photograph was referred to as the “target.” Crit-
ically, because the task was blocked such that each stimulus
category corresponded to one coherence level in each block
(Fig. 1b), the fractal cueprovidedparticipantswith twopieces
of information about the probe: 1. the likelihood of each pho-
tograph being the target; and 2. the coherence of the flickering
stream.

Experiment 1

We first tested whether choices and response times reflected
the influence of both memory evidence – operationalized via
cue probability – and sensory evidence — operationalized
via the coherence of the flickering probe. According to our
hypothesized two-stage inference mechanism (Fig. 2a), par-
ticipants would respond more quickly and accurately when:
1. the cued memories more reliably predicted the identity of
the upcoming photograph; 2. the observed visual evidence
was more coherent; and 3. the cue predictions matched the
visual evidence.

Response times and accuracy

Responses reflect the influence of memory and sensory
evidence Consistent with a two-stage integration process,
response times were distinctly bimodal, with separate peaks
following the onsets of the fractal cue and the flickering
stream (Fig. 2b; RT distributions multi-modal within each
ISI condition by Hartigan’s Dip Test (Hartigan and Hartigan,
1985): all HDS≥ 0.028, all P < .001).

Overall, participants responded accurately, matching the
target photograph on 75.20% (SEM0.085%) of trials (includ-
ing only trials for which there was a “correct” response
possible before stimulus onset – i.e. for cue levels 60%, 70%,
80%). This proportion was reliably greater than chance for
all blocks individually (all P ≤ 0.047 by binomial test of the
proportion of correct responses within each block against
the 50% chance level). Accuracy increased with both cue
predictiveness (R = .195, P = .009 by bootstrap across
participants; Fig. 3a) and target coherence (t(27) = −4.430,
P < .001 by two-tailed, paired two-sample t-test tested for
the 28 participants who performed at least one block inwhich
there was a predictive cue for both coherence conditions).
Thus, as expected, both factors appeared to influence the
decision making process.

Participants appeared to use the fractal cue to decide
whether or not to respond “early” (before the onset of the
probe stimulus). If the decision to respond early was driven
by sampling from cued associative memory reinstatements,
then it should bemodulated by: 1. the quality ofmemory sam-
ples relative to sensory samples; and 2. the time available to
sample. In other words, participants should have relied more
on the cues when the associated memories were more con-
sistent, when the cues signaled that the upcoming sensory
evidence would be of low coherence, and when the anticipa-
tion delay was longer.

Consistent with this model, the proportion of early
responses increased with the predictiveness of the fractal cue
(R = .222, P < .001), and this relationship was driven by
trials on which the cue signaled that the perceptual stimu-
lus would be of low coherence (for low coherence trials, the
correlation between cue predictiveness and early responses
was R = .366, P < .001; for high-coherence trials it was
R = .087, P = .161; difference: d = 3.907). Further, these
responses were faster when memory evidence was stronger.
Within the group of early responses, RTs showed a trend
towards being faster as the fractal cue – target relationship
was more predictive (R = −.035, P = .086 by bootstrap
across participants). Formal analysis of optimal responding
in two-choice reaction time tasks has shown that, norma-
tively, uninformative cues should discourage deliberation,
and lead to faster responding (Bogacz et al., 2006). Consis-
tent with this prediction, the speeding effect was significant
when including only informative cues (60% and higher; R =
−.050, P = .008). Finally, the longer participants had avail-
able to sample memory evidence, the more they responded
early – early responses increased with ISI – but only when
participants were signaled that the upcoming sensory evi-
dence would be of low quality (low coherence: R = .110,
P = .047; high coherence: R = −.003, P = .511; differ-
ence: d = 1.134).

Separately, the model predicts that responses made after
the onset of the flickering probe stimulus should also reflect
the quality of both kinds of evidence and, critically, now
that both types of evidence are explicitly available, that these
effects should interact with whether or not the content of
memory and the probe are in agreement. Consistent with
this model, for responses after the onset of the flickering
stream, RTs were faster when the cue was more predic-
tive (R = −.017, P = .044), and when the flickering
stream was higher coherence (mean RTs – probe-locked,
log-transformed,Z-scoredwithin participant: lowcoherence:
0.158 SEM 0.061 high coherence:−0.128 SEM 0.039 mean
difference between low and high coherence RTs within-
participant 0.286, SEM 0.091, t(29) = 3.145, P = .004).
These factors indeed interacted: participants were more
speeded by cue predictiveness when coherence was lower
(low coherence: R = −.147, P < .001; high coherence:

123



Cognitive, Affective, & Behavioral Neuroscience

Fig. 2 a Two-stage sequential sampling model. The Multi-Stage
Drift-DiffusionModel (MSDDM)describes an sequential sampling pro-
cess with time-varying drift rate (Srivastava et al., 2016). The first drift
rate corresponds to the period following onset of the fractal cue and pre-
ceding the onset of the flickering stream, while the second corresponds
to the period after the onset of the stream. Critically, at each trial, the
starting point of the second stage depends on the trajectory of the evi-
dence sampling that occurs in the first, on that trial. b Participants

responded to both the fractal cue and the flickering probe. Shown is
a histogram of (probe-locked) response times on test-phase trials during
the four-second delay condition. RT counts are aggregated across trials
and participants, and binned in increments of 100ms. Separate peaks
follow the onset of the fractal cue and the onset of the flickering stream,
reflecting the fact that participants made responses on the basis of both
types of information

R = −.065, P = .033; difference: d = 1.675), and only
when the target photograph matched the cue’s prediction
(valid cue: R = −.063, P < .001; invalid cue: R = .042,
P = .141; difference: d = 1.739; Fig. 3b).

Taken together, these results confirm that participants’
responses reflected the integration of information from both
mnemonic cues and sensory input.

Model comparison

We hypothesized that integration of mnemonic and sensory
information resulted from dynamic, online inference on the
basis of the quality of each source of evidence. We used
formal model comparison to test this hypothesis.

Our primary model of interest implemented a continuous,
two-stage sequential sampling process (hereafter: MSDDM;
(Srivastava et al., 2016); Fig. 2b), – the first stage driven by
the cue, and preceding the flickering probe, and the second
stage beginning at the onset of the flickering stream – with
different sampling rates in each stage.

An MSDDM is distinguished from alternatives by two
key features: first, that the drift rate changes at the time of
flickering stream onset, and second, that sampling in the sec-
ond stage proceeds from the evidence sampled during the
first stage. Therefore, we compared the model against vari-
ants that selectively disabled each of those features. The first
comparison model was a single DDM, which had continuous
sampling until the time of response, but no change in drift
rate across the entire trial – i.e. responses reflected all avail-
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Fig. 3 Choices and response times are modulated by the content
and quality of both memory and sensory evidence. a Memory and
sensory evidence affected choice accuracy. Across all trials, accuracy
increased with both the frequency of the cue-target pairing (R = .195,
P = .005) and the coherence of the flickering stream (t(27) = −4.430,
P < .001). Cue-target association was a slightly stronger predictor of
accuracy when sensory evidence was of low coherence (low coher-
ence: R = .226, P = .019; high coherence: R = .180, P = .128;
difference: d = 0.394). b Response times to the flickering probe

reflected a mixture of memory and sensory evidence. When partici-
pants responded after the onset of the flickering stream, (probe-locked,
z-scored) response times were lower when the target was the one that
had been more often seen following the cue in the Learning phase
(R = −.017, p = .044). The influence of the cue-target association
was much stronger when the flickering stimulus was of low coherence
(low coherence: R = −.147, P < .001; high coherence: R = −.065,
P = .033; difference: d = 1.675). (Error bars are ± 1 SEM, across
participants.)

123



Cognitive, Affective, & Behavioral Neuroscience

able evidence up to that point, weighted equally regardless of
modality. We refer to this model as 1DDM. The second com-
parison model was two unconnected DDMs, mirroring the
change in drift rate found in MSDDM, but with the second-
stage starting point set independently of the behavior of the
first stage – i.e. evidence sampled in the first stage only
affected responses made before the onset of the flickering
probe. We refer to this model as 2DDM. Each model was fit
separately to responses aggregated, across participants, by
condition – cue, coherence, and ISI.

Against both comparison models, the MSDDM was
a superior explanation of choices and response times.
Against the second-best model – the 2DDM model –
MSDDMwas superior by BIC (BIC(MSDDM)= 1745.262,
BIC(2DDM)= 10160.319, mean difference, across condi-
tions: 187.00). This was the case across all conditions, and
for every condition individually (Fig. 4a; S1);

Experiment 2

Experiment 1 showed that behavior in the task reflects a
dynamic integration of memory and sensory evidence, yield-
ing patterns of choices and response times that are best
captured by the MSDDM. However, because they measure
only the final response, behavioral data cannot in principle
reveal a relationship between the actual memory evidence
sampledoneach trial and responsesmade to the ensuingflick-
ering probe. In Experiment 2, we used multivariate pattern
analyses (MVPA) of fMRI data tomeasurememory evidence
samples following the fractal cue on each trial, and used this
measure to predict responses after the onset of the flickering
probe on that same trial. For this experiment, 31 additional
participants completed the task from Experiment 1, while
being scanned.

Behavior

Response times and accuracy Response behavior replicated
the patterns observed in Experiment 1. Accuracy was again
high overall: 70.24% correct responses (SEM 1.18%); and
reliably above-chance for 49/52 blocks individually (all p ≤
.073).

Accuracy again increased with cue predictiveness (R =
.247, P = .005) and coherence (t(26) = −4.301, P <

.001). RTs were again bimodal (all HDS≥ 0.102, all P <

.001). Higher cue predictiveness resulted in a greater ten-
dency to respond early (R = .149, P = .012), though, in
contrast to Experiment 1, the effect was specific to high-
coherence trials (lowcoherence: R = −.102, P = .111; high
coherence: R = .419, P < .001; difference: d = 4.213),
perhaps reflecting that, for this group of participants, the
rate of early responding was already at or near ceiling when

participants anticipated low coherence stimuli. These early
responses were faster when cue predictiveness was higher
(R = −.077, P < .001); this was equally true at either
coherence level (low coherence: R = −.231, P < .001; high
coherence: R = −.229, P < .001; difference: d = 0.161).

Responses after onset of the flickering probe were again
speeded by coherence (low: 0.227 SEM 0.042; high:−0.098
SEM 0.078; mean difference 0.325 SEM 0.098; t(30) =
3.326, P = .002), and by cue predictiveness, in both
coherence conditions (low: R = −.092, P = .021; high:
R = −.060, P = .013), moreso when coherence was
lower (difference: d = 0.760), and when the target photo-
graph matched the cue’s prediction: (invalid cue: R = .025,
P = .303; valid cue: R = −.017, P = .191; difference:
d = 0.945).

Finally, model comparison again favored the MSDDM
over the alternative model (BIC(MSDDM)= 1230.385,
BIC(2DDM)= 2861.661, mean difference, across condi-
tions: 67.97; Fig. 4b; S1; fitted parameters in Supplemental
Tables S3, S4).

Neuroimaging

We used neural pattern similarity to measure the trial-by-
trial influence of memory sampling on responses. For each
participant, we localized regions in the ventral visual stream
that were more active for face versus scene processing (FFA;
Kanwisher et al., 1997) and for scene versus face processing
(PPA; Epstein and Kanwisher, 1998) (Fig. 5a). We next com-
puted activity patterns corresponding to each photograph,
in the appropriate category-preferring region (faces in FFA,
scenes in PPA). We refer to these picture-specific patterns
as the target patterns. The target patterns were defined on
the basis of data from an earlier response-training phase
of the task, in which participants learned which keys were
mapped to each picture (see Methods). Critically, because
this response-training phase preceded the introduction of the
fractal cues, these neural activity patterns were decoupled
from the fractal cues that were later learned to predict the
corresponding photographs.

We then computed, for each trial from the Test phase, a
trial pattern – the average pattern in these regions over the
period following the onset of the fractal cue, up to either the
participant’s response, or oneTRbefore the onset of the flick-
ering stream, whichever came first. Hereafter, we define the
trial-by-trial reinstatement index as the correlation between
these trial patterns and the target pattern corresponding to
the photograph predicted by the fractal cue. (Note that on
50/50 trials this value is not defined, and so these trials were
excluded from neuroimaging analysis.)

Pre-stimulus reinstatement scales with task conditions As
in a previous study of memory sampling (Bornstein and
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Fig. 4 Model comparison.
Models were compared for their
fit to each bin of trials with the
same combination of cue
predictiveness, stimulus
coherence, and ISI. Shown here
is the BIC difference in favor of
the MSDDM model (axes
oriented such that a taller bar =
greater evidence in favor of
MSDDM), for conditions
grouped by cue predictiveness
and coherence level
(aggregating across ISI, for
display). In both experiments,
MSDDM was favored over
2DDM for every condition
individually, and across all
conditions as a whole. a
Experiment 1.
BIC(MSDDM)= 1745.262,
BIC(2DDM)= 10160.319.
Mean difference, across
conditions: 187.00. b
Experiment 2.
BIC(MSDDM)= 1230.385,
BIC(2DDM)= 2861.661. Mean
difference, across conditions:
67.97

Daw, 2013), we expected that, when the next-step association
was more difficult to resolve – when the cue was followed
by each photograph more equally, in the participant’s expe-
rience – sampling should proceed longer, and thus more
memory samples should be drawn across the anticipation
period, leading to a higher value of the reinstatement index.
Conversely, when sampling from memory reached threshold
– and a response was initiated – there should be fewer rein-
statements, and thus a lower reinstatement index. Similarly,
memory sampling should continue across the entire anticipa-
tion period as long as participants do not respond before the
flickering probe, leading to a higher reinstatement index with
a longer anticipation period. Further, matching the patterns
in early response times, memory sampling should be more
relied upon when it would be more useful to the decision – in
other words, reinstatement index should be higher when the
upcoming sensory evidence would be of lower coherence.

The reinstatement index measure exhibited all of these
features, consistent with the hypothesis that it measures
memory sampling. On early response trials, reinstatement
index was lower when the memory-based decision was eas-
ier (correlation between cue probability and reinstatement
index R = −.072, P = .004; Fig. 6a). On late response tri-
als, reinstatement index was uniformly higher than on early
response trials, and was equally high at every cue probability
level (R = .020, P = .225; Fig. 6a). Finally, reinstate-
ment index was higher on trials with a longer ISI preceding
low-coherence, but not high-coherence, stimuli (low coher-
ence: R = .183, P = .016; high coherence: R = −.083,
P = .247; difference: d = 1.546; Fig. 6b).

The fact that reinstatement index is globally higher for
late response trials, versus early responses (Fig. 6a), raises
the possibility that this measure is simply indexing the
amount of data included in the analysis. Indeed, in the
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Fig. 5 Reinstatement pattern analysis. aWe defined, for each partic-
ipant, the Fusiform Face Area (FFA) and Parahippocampal Place Area
(PPA), using a localizer task that followed the main experiment. The
resulting mask defined the region across which we calculated picture-
specific templates. b For each trial on which participants responded
after the onset of the flickering stream, we computed the average pattern

of activity in the corresponding ROI (face, scene) over the period fol-
lowing the onset of the fractal cue, but preceding the onset of that
flickering stream. We then calculated a reinstatement index as the cor-
relation between this trial-specific pattern and the template pattern for
the picture predicted by the fractal cue

case of late responses, the reinstatement index is computed
over the entire period between the cue and the visual evi-
dence stream, whereas for early responses the measure only
includes the time between cue and response (up to the limit
of the temporal resolution of our fMRI protocol). An impor-
tant validation that this difference in included timepoints
is not driving the effect can be found in three features
of the presented data. First, if the increase in reinstate-
ment index were simply reflecting lower variability when
including more data, then one would expect variance to
decrease with longer response times during early-response
trials. However, the variance of reinstatement index is in fact
steadily greater for early responses to less-predictive cues,
which are associated with longer response times (Fig. 6a,
left panel; 60%: SEM=0.032565, 70%: 0.023232, 80%:
0.01206). Second, while reinstatement index does indeed
increase across the anticipation period for trials where the
participant expects low-quality sensory evidence (Fig. 6b,
left panel), consistent with greater reinstatement activity dur-
ing these longer anticipation intervals, the corresponding
quantity remains flat or even numerically decreases across
longer intervals for trials on which the participant expected
high-quality sensory evidence (Fig. 6b, right panel), consis-
tent with the idea that anticipatory reinstatement on these
trials proceeds at a slower rate (or perhaps stops early on).
Finally, we observed that the variance of the reinstatement
index neither decreases (nor increases) as a function of time
alone, either across or within coherence conditions (Low-
coherence: 4.75 s: SEM=0.01602, 6.75 s: 0.02107, 8.75 s:

0.015815; High-coherence: 4.75 s: SEM=0.014454, 6.75 s:
0.013046, 8.75 s: 0.015277).

Pre-stimulusreinstatementpredicts 2nd stage response
timesThe observation that reinstatement indexwas related to
cue probability is consistent with sequential sampling mod-
els, but does not itself differentiate between MSDDM versus
1DDM or 2DDM. Therefore, a key test of the MSDDM is
whether responses to the flickering probe were influenced
by sequential sampling in anticipation of sensory input, on a
trial-by-trial basis. In other words, we asked whether memo-
ries retrieved before the probe affected responses made after
its onset. To test this, we examined whether reinstatement
index predicted response times after the onset of the flicker-
ing probe on each trial.

Supporting our hypothesis, reinstatement indexwas a reli-
able predictor of faster response times to the probe (R =
−.07, P = .001), a relationship that held after controlling
for other factors each of which also modulated response
times (cue predictiveness, coherence, ISI; R = −.0337,
P = .039). If sampled memory evidence sets the start-
ing point for sensory inference, then reinstatement index
should only predict faster responses when memory and sen-
sory evidence are in agreement – when the cue is “valid.” In
agreement with this hypothesis, RTs were uniquely speeded
on valid- – but not invalid- – cue trials (valid cue: R = −.053,
P = .029; invalid cue: R = .010, P = .404; difference:
d = 1.204; Fig. 7a). Finally, if memory and sensory evidence
were integrated, memory evidence should show correspond-
ingly less influencewhen sensory evidencewas stronger; this
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Fig. 6 Reinstatement index measures adaptive sampling from
memory.Reinstatement index changed with the quality of memory evi-
dence, the anticipated quality of sensory evidence, and the available time
to sample. a Memory sampling increased with the difficulty of the
memory decision. When subjects responded “early”–in other words,
when sampling terminated during the delay period–reinstatement index
was higher when cues were less predictive of a unique target (lower
cue probability; R = −.072, P = .004). When subjects responded
“late” – by definition, sampling continuously throughout the delay
period–reinstatement indexwas uniformlyhigher thanon early response
trials, in every condition individually, and across all conditions together

(t(134) = −5.945, P < .001). Consistent with this measure indexing
the subjective difficulty of the decision on each trial, the reinstate-
ment index on late responses was uncorrelated with cue predictiveness
(R = .020, P = .225). b When sensory evidence was weak, mem-
ory sampling continued throughout the anticipation period. On late
response trials, reinstatement index increased with the length of the
anticipation period – which allowed more time available to estimate
the upcoming stimulus–but only on trials on which the upcoming sen-
sory evidence was to be of low coherence (low coherence: R = .183,
P = .016; high coherence: R = −.083, P = .247; difference:
d = 1.546). (Error bars are ± 1 SEM, across participants.)

123



Cognitive, Affective, & Behavioral Neuroscience

Lowest Highest
Reinstatement index

(binned within-subject)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R
es

po
ns

e 
tim

e

Weak sensory evidence

Lowest Highest
Reinstatement index

(binned within-subject)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Strong sensory evidence

Valid cue
Invalid cue

Lowest Highest
Reinstatement index

-2

-1.5

-1

-0.5

0

0.5

1

1.5

R
es

po
ns

e 
tim

e

Valid cue

Lowest Highest
Reinstatement index

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Invalid cue

Fig. 7 Sampled memory evidence is incorporated into perceptual
decisions. a Memory evidence speeded responses when the target
matched expectations. The MSDDM predicts that sampled memory
evidence should carry forward to visual inference, effectively setting
the starting point for this second stage. Thus, if the visual stimulus
matches the sampled memory evidence, responses should be speeded,
and, if the visual stimulus doesn’t match the sampled memory evi-
dence, responses should be slowed. Critically, this speeding or slowing
should be dynamic, corresponding to the strength of evidence sampled
on that trial. Consistent with this model, higher reinstatement index
predicted faster responding to sensory information when the cue was

“valid”, or matched the sensory stimulus, but not when the cue was
invalid (valid: R = −.053, P = .029, invalid: R = .010, P = .404,
difference: d = 1.204). b Memory evidence affected responses to
weak, not strong, sensory evidence. Further confirming the model,
the speedup and slowdown was pronounced on trials where sensory
evidence was weaker (low coherence: valid: R = −.063, P = .032,
invalid: R = .130, P = .087, difference: d = 1.586), but less so
when sensory evidence was strong (high coherence: valid: R = −.037,
P = .206, invalid: R = −.089, P = .117, difference: d = 0.423).
(Error bars are ± 1 SEM, across participants.)
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should be reflected as a greater speeding of matching, rela-
tive to non-matching, trials. Consistent with this prediction,
the benefit to memory evidence was pronounced in the low-
coherence condition, and no such benefit was observed in
the high-coherence condition (low coherence, invalid cue:
R = .130, P = .087; low coherence, valid cue: R = −.063,
P = .032; difference: d = 1.586; high coherence, invalid:
R = −.089, P = .117; high coherence, valid: R = −.037,
P = .206; difference: d = 0.423; Fig. 7b).

Together, these results support a role for the dynamic
sampling of memory evidence in perceptual decisions, via
a continuous perceptual inference process linking memory,
sensation, and action.

Discussion

Humans (Bogacz et al., 2010; Drugowitsch et al., 2012), ani-
mals (Hanks et al., 2011), and even intelligent machines
(Bishop, 2006) rely on expectations, derived from expe-
rience, to make quick and accurate decisions (Bogacz
et al., 2006). While important empirical and theoretical
work has described ways in which expectations influ-
ence dynamic, deliberative decisions (Drugowitsch et al.,
2012; Moran, 2015), these investigations have generated
seemingly-conflicting results (van Ravenzwaaij et al., 2012;
Dunovan et al., 2014; Moran, 2015; Palestr et al., 2018), and
have mainly set aside the dynamics of expectation-setting
itself. These studies generally assume that subjective expec-
tations are more or less static across repeated trials of the
same type (Hanks et al., 2011; Leite and Ratcliff, 2011;
van Ravenzwaaij et al., 2012; Dunovan et al., 2014), and
are instantaneously available to the subject at choice onset.
These assumptions are justified when expectations can be
based on extensive repeated experience in stationary environ-
ments, or explicit instructions.However, even despite designs
that muted the potential for expectations to vary between
instances of a decision, such variation is still commonly
observed. A standard approach is to model this variance
as random Gaussian fluctuations of the parameter values
(Ratcliff and Tuerlinckx, 2002; Ratcliff andMcKoon, 2008).
It is an open question what mechanism gives rise to this vari-
ation.

We reasoned that, if trial-by-trial variability in expecta-
tions is a signature of a dynamic process, this variability
would be most pronounced – and thus most subject to inter-
rogation – when expectations were based on relatively few
experiences, and when there was sufficient time available
for these experiences to be sampled before the decision. Our
study sought to characterize and explain trial variability in
expectations by examining a space left unaddressed by previ-
ous work: that in which the dynamics of expectation setting

could be separately manipulated, and measured, on a trial-
by-trial basis.

Participants performed a novel cue-guided perceptual
decision task, in which they were asked to press a key corre-
sponding to what they believed to be the target photograph
on a given trial. On each trial, prior to probe presentation,
memory cues triggered reminders of past sequential asso-
ciations between the cue and target or non-target photos.
Then, after a delay, a probe stimulus displayed the target
and non-target, in a noisy, rapidly flickering stream. Thus,
both parts of the trial provided partial information as to the
correct response. Choices and reaction times reflected the
combination of both kinds of information, and were best fit
by integrative two-stage sequential sampling of memory and
sensory evidence. Using fMRI, we showed that second-stage
responses on each trial were predicted by the reinstatement of
stimulus-specific representations, the content and fidelity of
which fluctuated between trials, that developed with the time
available to sample on each trial, and the content of which
reliably predicted the pattern of behavioral response. The
results demonstrate that sensory evidence sampling in per-
ceptual decisions reflects the influence of a preceding phase
of an inference process that is already ongoing at the onset
of the visual probe.

Several recent findings can be reinterpreted in light of
a continuous inference mechanism that begins before the
onset of sensory information.Multiple reports have observed,
using electrophysiology in non-human primates, “ramping”
of neural activity in putative accumulator regions during
epochs preceding sensory and motor decisions (Hanks et al.,
2011; Hauser et al., 2018). Hauser and colleagues (2018)
observed that pre-trial ramping activity had a meaningful
influence in explainingRTvariability. Specifically, they iden-
tified ramping with variability in the onset of motor plans.
They ascribed this to a mechanism that considers coun-
termanding motor plans. Consistent with this view, in our
model fits the second-stage non-decision time showed a
trend towards decreasing with increasing cue predictiveness
(Supplemental Fig. S3) – in other words, less onset delay
whendiscordant outcomes are less likely to be sampled. From
this perspective, our model suggests that the onset variability
they identified reflects the degree to which preparatory activ-
ity, reflecting inference about trial expectations, conflicted
with sensory information, thus delaying action.

Hanks and colleagues (2011) reported a small amount of
pre-trial ramping, but found that it did not have direct impact
on subsequent behavior. It seems likely that two features of
their designworked against such a result. The first is a feature
that, as we noted above, is common to most studies involving
expectation-setting: fixed priors learned to asymptote over
many hundreds of experiences. The second feature is the use
of short inter-trial-intervals, on the order of 100s of mil-
liseconds, potentially insufficient to permit the development
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of memory-guided expectations. While these aspects of their
design were critical to the goals of their study, which focused
on the equilibrium dynamics of expectations in inference,
they are likely to diminish the need and/or opportunity
for online inference informing the content of expectations.
Indeed, a possible unification of our results and theirs is that
the dynamic bias signal they observe is ongoing inference
over the prior (Deneve, 2012), and that the short anticipation
delay meant that the expectation-setting process (proceeding
in parallel to sensory inference; see below) only accumulated
to an observable degree when sensory decisions persisted
long enough. Informed by our previous work on memory-
guided, value-based decision-making (Bornstein and Daw,
2013; Bornstein et al., 2017; Bornstein and Norman, 2017),
the present study was designed with these considerations
specifically in mind. Further work is necessary to understand
the precise conditions under which expectation-inference
does and does not have meaningful influence on the sub-
sequent decision.

As we mentioned above, it has been observed that behav-
ior in sensory inference tasks tends to be best fit when model
parameters are allowed to vary – stochastically – between
trials (Ratcliff and Tuerlinckx, 2002). This is true both when
the parameters are set on the basis of known task condi-
tions (in other words, expectations) – for instance, when the
drift rate is enhanced for a more common stimulus (Rahnev
et al., 2011;Wyart et al., 2012), or starting point is set to favor
the more common response (van Ravenzwaaij et al., 2012)
– and also when they are allowed to vary freely (Ratcliff
and McKoon, 2008). In both cases, such variability might
arise from active sampling of recent past trials, the outcomes
of which would bias sampling model parameters towards
a faster, more accurate response in that previous condition.
Intriguingly, in the latter case, this would imply that infer-
ence is ongoing even when long-run expectations are not
justified (Yu and Cohen, 2009). It might thus be worth inves-
tigating whether signatures of a pre-trial inference process –
e.g. lower variance of diffusion parameters following longer
inter-trial-intervals (Supplemental Fig. S2) – are present even
in tasks without decisive expectations.

The use of memory samples to set inferential decision
parameters in this study is also motivated by work on rein-
forcement learning, inwhichmemory-based planning is used
to accelerate learning by reducing uncertainty in the agent’s
policy and state representation. It has been shown that such
memory-guided planning is particularly useful within com-
plex or “partially observable” state spaces (Silver andVeness,
2010; Barto and Sutton, 1998), and early on in learning of
even simple tasks (Lengyel and Dayan, 2008). We and oth-
ers have also recently shown that the influence of memory
on decisions can be specifically biased by reminder cues pre-
sented before the onset of choice options (Bornstein et al.,
2017; Bornstein and Norman, 2017; Ritter, 2018; Vikbladh

et al., 2017), similar to the informative fractal cues presented
here. In light of the present findings, a unifying explanation of
these results is that the brain is engaged in an ongoing attempt
to reduce uncertainty about the current state by drawing on
memories of similar past situations and that such reminder
cues, even when incidental, are treated as meaningful indi-
cators of similarity.

This interpretation suggests one answer to the question of
why participants in this task use memory samples – even
though the task is designed in such a way that memory
samples cannot, on their own, be decisive. Returning to the
reinforcement learning terminology, we can understand the
sensory decision here as one instance of a broader class of
problems, those of state inference. Though the task used here
is modeled most directly on the canonical perceptual deci-
sion process that between two actions on the basis of a noisy
stream of visual information, Rao (2010) has shown that
such sequential sampling models like we use are formally
equivalent to a rational approach taken by a reinforcement
learning agent navigating a partially observablemarkov deci-
sion problem (POMDP). In a POMDP, as opposed to the fully
observable MDP, the agent acquires only partial information
about the current state – e.g. the noisy sensory information
and, in our task, the history of experiences with the state that
followed the given fractal cue. Their internal state represen-
tation is probabilistic – a distribution of “beliefs” over the
current state, and action selection is thus a process of jointly
inferring both the state and the action contingencies that fol-
low. This distribution reflects both the estimate of the current
state and the uncertainty the agent has about that estimate. An
agent navigating this environment has three actions available
to it – the two motor responses, and a third “sample” action,
in which it chooses to acquire additional evidence that may
help reduce uncertainty in its belief distribution, rather than
to act externally. Because new evidence from memory can
do no worse than increase certainty in the current action pol-
icy (Barto and Sutton, 1998), the expected value of acquiring
new evidence samples is strictly non-negative, net the cost of
acquiring a sample (e.g. ametabolic cost ofmemory retrieval,
a foregone reward in delaying action, or foregoing the oppor-
tunity for a few seconds of rest). The agent therefore has
incentive to continue taking that “sample” action as long as
it is useful for reducing uncertainty, over and above any costs.
The use of memory samples implies that the cost of acquir-
ing a memory sample must be less than the initial value of
reducing this uncertainty in this task.

A related question is why participants respond early,
before the onset of sensory information. A similar find-
ing was reported by Kiani and colleagues (Kiani et al.,
2013), who observed that monkeys performing a direction-
discrimination taskof experimenter-controlledduration com-
mitted to a decision once accumulated evidence crossed the
monkeys’ own internally-set threshold, regardless ofwhether

123



Cognitive, Affective, & Behavioral Neuroscience

more, potentially decisive, evidence was yet to come. The
authors of that study interpreted their finding as potentially
indicating a “cost” of sampling or, equivalently in both their
and our setting, a cost to waiting to act, unrelated to the tim-
ing of the task itself (their task, like ours, was of fixed length
and thus did not reinforce faster responding). What exactly
gives rise to this cost remains an open question. Further work
is necessary to understand the internal trade-offs made when
weighing the costs and benefits of sampling from memory
and the environment.

The finding that multiple streams of evidence are inte-
grated raises the question of whether such integration is
purely serial, or if it can operate in parallel. In other words,
does memory sampling cease to influence choice at the time
of the onset of the flickering probe – or even before (e.g.
“freezing”; Kiani et al. 2008; Hoskin et al. 2019) –or does
it continue once that imperative stimulus has appeared, con-
tributing additional evidence from expectations even as the
sensory decision unfolds (Hanks et al., 2011)? Our model is
consistent with both possibilities, because the second-stage
drift rate that we fit can be equivalently interpreted as either
the drift rate of sensory accumulation or of the superimposed
sampling from both memory and sensory evidence. Address-
ing this question further will likely require neural recordings
at fine temporal resolution and broad spatial coverage, in
order to identify separate, simultaneous sampling timeseries.

Whether sampled in serial or parallel, each form of evi-
dence must be weighted in its contribution to the final action
selection. What is the proper weighting of each, and how is it
determined? Here we show that the two kinds of information
are mixed, and that the weighting is determined in part by the
dynamics of sampling each representation within each trial,
and also, implicitly, by an exogenousmechanism that decides
how much to sample from memory in the first place. Is this
decisionmade at the cue presentation? Or is it also a dynamic
decision – are samples first drawn and then evaluated for their
informational content? Our ability to resolve these questions
in this experiment was limited by the temporal resolution of
our measurements as well as aspects of the design: in this
experiment the sensory information was – inherently – more
decisive than the memory. A follow-up experiment, perhaps
reversing the order of presentation of memory cues and flick-
ering probe (Gao et al., 2011), could build on the results and
tools demonstrated here to more finely measure the effective
weight in behavior, and how that weight is determined at the
level of neural activity.

One such determining factor might be the degree of confi-
dence in the initial estimates. Previous work has shown that
the brain codesmeasures of confidence suitable for determin-
ing weighting of the sensory evidence necessary to select
action (Braun et al., 2018; Odegaard et al., 2017; Kiani &

Shadlen, 2009), and that this measure predicts subsequent
“changes of mind” on the basis of late-arriving sensory evi-
dence (Resulaj et al., 2009; van den Berg et al., 2016). Recent
work also suggests that a corresponding quantity is computed
separately for memory evidence (Mccurdyet al., 2013; Ye
et al., 2018). Do these confidence estimates inform the mix-
ture of multiple kinds of evidence in behavior? A related
question is whether, across modalities, such measures are
absolute, reflecting only the confidence within the given
representation, or are they coded relative to the confidence
available in other representations? By setting the parameter
selection exogenous to this model, we also set exogenous the
likelymechanism for confidence to influence the process. It is
possible that the degree of confidence in evidence available
on the first stage can inform the parameters of the second
stage – and vice-versa, since the quality of sensory evi-
dence is signaled ahead of time (Khoudary et al., 2022;Wang
et al., 2022). Future extensions of this task should bring such
decision-relevant confidence under experimental measure-
ment or control.

Along similar lines, recent work has shown that multiple
forms of associative maps can be learned and represented
simultaneously, reflecting both statistical and semantic rela-
tionships among stimuli (Zheng et al., 2022). This finding
raises the question ofwhether thesemultiplemaps also simul-
taneously contribute to online inference of the sort examined
here, a possibility formalized in a recent theoretical frame-
work describing the dynamics of parallel sampling from
internal representations (Wang et al., 2022). According to
this framework, each set of associations should guide behav-
ior in proportion to its relative precision at each moment
(Khoudary et al., 2022). However, as described above, the
current experiment approach was limited in its ability to dis-
cern whether the multiple forms of evidence are integrated in
parallel. Future studies could select cue-target associations
that have both in-task statistical and, e.g., semantic relations,
and examine factors that modulate the relative influence of
both kinds of information on behavior.

A final caveat is that our results do not speak to the ques-
tion of how evidence samples are translated into decisions. A
groundbreaking recent computational investigation recently
demonstrated that the reaction timeproperties consistentwith
the entire class of evidence accumulation models, such as the
one we fit to data here, are also consistent with a different
set of approaches that, rather than accumulating evidence
across multiple samples, simply select an extreme or most-
relevant individual sample (Stine et al., 2020). In light of
this important finding, it is necessary to make clear that
our study, like nearly every other investigation of evidence-
sampling behavior in recent decades, cannot in principle
directly determine the algorithmic-level process underlying
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the expectation-setting process (e.g. accumulation versus
extrema detection). We anticipate that future studies, in par-
ticular those which employ methods using high temporal
resolution paired with broad spatial coverage, may be able
to integrate our observations with the results of Stine and
colleagues to address this foundational question. To more
directly address the accumulation question, future studies,
perhaps employing measurement protocols with wider cov-
erage, could also examine whether the reinstatement index
predicts more general accumulation activity in downstream
regions (e.g. LIP or anterior frontal areas). Such studies
could examine in more detail our observation that reinstate-
ment index (measured during the cue period) is sensitive to
upcoming visual coherence – suggesting that sampling may
be minimal, and perhaps restricted to early timepoints, dur-
ing the anticipation of high-coherence trials, reflecting the
relative likelihood of high-quality visual evidence soon to
appear.

Because expectations are nearly omnipresent in decision-
making, it is possible that previous investigations have
obscured an important source of trial-by-trial variation.
Decisions may often be biased by samples from internal
information – memories, but also emotions, values, and rules
– that give rise to expectations established in the moment,
rather than fixed across time. Biases, derived from experi-
ence, are helpful, and under some circumstances, may even
be necessary, for efficient decision-making – they help us
take account of, and leverage, the statistics of our environ-
ment. Current research is outlining a role for goal-directed,
decision-time planning in a number of psychiatric condi-
tions. Dysfunction in this mechanism could explain disease
states characterized by under- or over- reliance on expecta-
tions in behavior such as in Parkinsonism (Perugini et al.,
2016; Perugini and Basso, 2017), disorders of compulsion
(Gillan et al., 2016), or positive symptoms in schizophre-
nia (Davies et al., 2017). Consistent with the observation
of Perugini and Basso (2017) that deficits in expectation-
setting cannot be explained by altered dopamine function,
the present findings provide an aperture for treatments, by
underscoring that biases are not simply “stamped-in” reg-
ularities. Instead, the fact that expectations are constructed
in the moment implies that they can be changed, via tar-
geted interactions with the construction process. Outside of
disease, biases alterable in the service of better decisions
may be a crucial adaptation, allowing organisms to adjust
their behavior at a timescale faster than that of the long-run
statistics of their environment. More broadly, it means that,
when it comes to individual decisions, the link between past
and present can be revisited, even changed, when the need
arises.

Methods

Participants

33 participants (15 male, 30 right-handed; ages 18–50,
mean 21.9) each performed two repetitions of the task in
Experiment 1. Ten blocks were excluded for failing to meet
one or more criteria: if the participant failed to respond on
10% of learn or test-phase trials (nine blocks); if the com-
bined number of skipped trials and post-stimulus error trials
during the test phase were greater than 30% (four blocks);
if the difference between calibrated accuracies for any pair
of stimuli was less than 5% (one block). Three participants
failed to meet criteria for all blocks they performed; they
were excluded entirely from analysis. In all, 30 participants
and 56 blocks were included in the final analysis.

36 participants (10 male, 29 right-handed; ages 18–33,
mean 23.19) each performed one (5) or two (31) repetitions
of the task in Experiment 2. (Five blocks were excluded due
to scannermalfunction (1), participant discomfort (1), or pro-
gramming error (3).) 15 blocks were excluded for failing to
meet one or more criteria: nine for failing to respond on
enough learn or test-phase trials; one for failing to respond
correctly or at all on enough test-phase trials; nine for failing
the calibration accuracy threshold. Five participants failed
to meet criteria for all blocks they performed; they were
excluded entirely from analysis. In all, 31 participants and
52 blocks were included in the final analysis.

In Experiment 1, participants were compensated with
course credit. In Experiment 2, participants were paid a flat
fee of $50. All participants reported themselves as free of
neurological or psychiatric disease, and fully consented to
participate. The study protocol was approved by the Insti-
tutional Review Board for Human Subjects at Princeton
University.

Task

The experiment was controlled by a script written in
Matlab (Mathworks, Natick, MA, USA), using the Psy-
chophysics Toolbox (Brainard, 1997). Both Experiment 1
and Experiment 2 consisted of the following four phases,
repeated for two blocks for each participant, with dif-
ferent stimuli and task conditions as detailed below.
Experiment 2 was performed in an fMRI scanner, and con-
sisted of an additional, fifth phase, a Localizer task described
below.

In Phase 1, the Response training phase, particpants
learned to map response keys to stimuli. Four response keys
– numbers one through four on a standard US keyboard –
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were each associated with one of four stimuli – black and
white photographs, two faces and two natural scenes.

Stimulus photographs were chosen from a set of four
possible scenes and four possible faces. Each category was
subdivided into two sets of two paired photographs. Each
photograph was black andwhite, normalized for contrast and
brightness, and chosen to be highly confusiblewith the paired
face or scene.

Participants were first shown each photograph, centered
on a black background, in order of the associated response
keys, and asked to press the current key in the sequence. In
all experiments. keys one and two corresponded to the faces,
and keys three and four corresponded to scenes. Then, the
photographs were shuffled, and presented one at a time for
two seconds each. Participants were instructed to press the
correspondingkey. If theypressed the correct key, a greenbox
appeared around the photograph. If they pressed the incorrect
key, the photograph remained on the screen. Each photograph
was displayed ten times. If participants pressed the incorrect
key on the first try more than twice for any photograph, they
weremade to repeat the response training phase in its entirety.

Phase 2, the Calibration phase, measured the ability of
participants to discriminate between eachpair of photographs
when they were presented in a noisy, “flickering” stream
(Fig. 1). On each trial, participants were shown a rapid stream
of pictures, displayed for 1/60th of a second apiece. They
were instructed to press the key corresponding to the target
– the photograph shown most often. Each frame consisted of
either the target photograph, the paired same-category photo-
graph, or a perceptual mask consisting of a phase-scrambled
version of a superposition of the two photographs. Percep-
tual masks were shown for between one and three frames,
withmaskdisplay length chosen froma truncated, discretized
exponential distribution of mean 2. Calibration trials lasted
three seconds, regardless of response. When participants
pressed a key, the stream stopped, and the target was shown
for the remainder of the trial length. If the participant pressed
the correct key, a green box appeared around the photograph.
If the participant pressed the incorrect key, a red box appeared
around the photograph.Aone second inter-trial-interval (ITI)
followed each trial. On each trial, the proportion of frames
that contained the target photograph – the coherence – was
updated according to a Quest algorithm (Watson and Pelli,
1983), with the goal of calibrating participants responses to
either 65% (low) or 85% (high) accuracy. Each block mea-
sured the coherence necessary to elicit either high or low
accuracy for each photograph. In Experiment 1, the first 24
participants performed 60 calibration trials per photograph,
while the last 9 participants performed 40 calibration tri-
als per photograph. In Experiment 2, participants performed
30 calibration trials per photograph. Although Experiment 2
participants remained in the fMRI scanner for this phase, no

scanner data was collected. This is the only phase for which
scanner data was not collected.

In Experiment 1, for stimuli calibrated to low accu-
racy (65%), the average coherence (proportion of non-mask
frames that contained the target photograph), across par-
ticipants, blocks, and stimuli, was 60.98% (SEM 1.06%);
whereas for the high-accuracy (85%) condition, the target
photograph was shown on 75.88% (SEM 1.08%) of frames.
In Experiment 2, these figures were 62.17% (SEM 1.03%)
coherence in the low-accuracy condition, 77.66% (SEM
1.15%) coherence in the high-accuracy condition.

Phase 3, the Sequence learning phase, provided partici-
pants with a set of experiences that linked each of four fractal
cues to the photographs (Fig. 1). On each trial, participants
were shown one of four fractal cues, displayed on the screen
for 750ms. Fractal cues were chosen in order to minimize
the possibility of pre-existing relationships between the cue
and target, and thus to allow us to more directly examine the
influence of statistical learning from a small number of expe-
riences on subsequent perceptual decisions. In Experiment 1,
the cue was followed by a variable inter-stimulus-interval
(ISI). For 24 participants, this ISI was either 500ms, 1000ms,
or 4000 ms, selected pseudorandomly at each trial according
to a uniform distribution. For the remaining 9 participants in
Experiment 1, and all participants in Experiment 2, this ISI
was a fixed length of one second. After the ISI, participants
were shown either of two photographs linked to the cue, both
from the same category (face or scene). The photographs that
followed the cue were selected according to one of four bino-
mial distributions – 50/50, 60/40, 70/30, or 80/20. The two
cues in each category (face or scene) predicted their conse-
quents using symmetric distributions – if one cue predicted
Face A with 80% probability, the other cue predicted Face B
with 80% probability. Participants were instructed to press
the button corresponding to the displayed photograph. If the
response was accurate, the photograph was surrounded by
a green box. If the response was inaccurate, the photograph
was surrounded by a red box. Regardless of response time
or accuracy, the picture remained on the screen for two sec-
onds. In Experiment 1, the trial was followed by an ITI of
two seconds. In Experiment 2, the trial was followed by an
ITI of between 500ms and 8000ms, chosen from a truncated
exponential distribution, discretized in units of 500ms, with
mean 2000ms. This phase consisted of 100 trials, 25 for each
cue, ordered pseudorandomly.

Phase 4, the Cued inference task, was the primary test
of our hypotheses. On each trial during this phase, partici-
pants first viewed a fractal cue that predicted the likelihood of
the target photograph during the following flickering stream.
Cues were presented for 750ms, and followed by an ISI of
variable length, selected at each trial from a uniform distri-
bution. For the first 24 participants of Experiment 1, this ISI

123



Cognitive, Affective, & Behavioral Neuroscience

was either 500ms, 1000ms, or 4000ms. For the remaining 9
participants of Experiment 1, this ISI was either six, eight, or
ten seconds. In Experiment 2, this ISI was either four, six, or
eight seconds. In both experiments, ISI durations were cho-
sen from a uniform distribution over the possible values. The
flickering stream used one of the two mixture proportions
calibrated during Phase 2; mixture proportions were fixed
for each category – e.g. faces might be set to low coherence,
and scenes to high coherence. Thus, the fractal cue predicted
both the likely identity of the target photograph, and also the
coherence of the subsequent stream. The stream remained
on the screen for three seconds. When a key was pressed,
the target photograph appeared, and remained on the screen
until the three seconds were finished. If the keypress was cor-
rect, the photograph was surrounded by a green box. If the
keypress was incorrect, the photograph was surrounded by a
red box. Participants were instructed to press the key corre-
sponding to the identity of the target photograph. Critically,
however, participants were allowed to respond early – dur-
ing the ISI, before the flickering stream began. Participants
were not given any explicit or implicit inducement to respond
early or accurately – they were informed that, regardless of
the speed or correctness of their response, all trials were of
fixed length, modulo the ISI. This phase continued for 80
trials, 20 trials of each cue, ordered pseudorandomly.

Phases one through four were repeated as two blocks,
each with different fractal cues and picture stimuli. Cue
were selected pseudorandomly for each block, and the map-
ping from coherence level to category was counterbalanced
between blocks.

After the two blocks, Experiment 2 participants completed
a final phase, Phase 5, the Localizer task. We used the data
collected in this phase to localize regions of cortex prefer-
entially active during processing of face and scene images.
Participants performed a 1-back image repeat detection task.
Images were presented inmini-blocks of 10 trials each. Eight
of the pictures in each block were trial-unique, and two were
repeats of the picture on the immediately preceding trial.
Repeats were inserted pseudorandomly according to a uni-
form distribution. Stimuli in each mini-block were chosen
from a large stimulus set of pictures not used in the main
experiment. The pictures belonged to one of four categories
– faces, objects, scenes or phase-scrambled scenes. Pictures
were each presented for 500ms, and separated by a 1.3 s ISI.
A total of 12 mini-blocks were presented (3 per category),
with each mini-block separated by a 12s inter-block interval.

Imagingmethods

Experiment 2 was collected while participants were lay-
ing in the fMRI scanner.Data were acquired using a 3T
Siemens Prisma scanner with a 64-channel volume head
coil. We collected three functional runs with a T2*-weighted

gradient-echo multi-band echo-planar sequence (44 slices
oriented parallel to the long axis of the hippocampus, 2.5mm
isotropic resolution, echo time 26 ms; TR 1000 ms; flip
angle 50 deg; field of view 192mm). To allow for T1
equilibration, we discarded the first six volumes of each
functional run (6 s). We also collected a high-resolution 3D
T1-weighted MPRAGE sequence (1mm isotropic resolu-
tion) for registration across participants to standard space.
Functional image preprocessing was performed using FSL
(FMRIB Software Library version 5.0.8; (Smith et al., 2004;
Jenkinson et al., 2012)). Anatomical images were coregis-
tered to the standard MNI152 template image, then indi-
vidual participant functional images were coregistered to
the realigned anatomical images. The transformation matri-
ces generated during this coregistration process were used
to transform Region of Interest (ROI) images (described
below, ROI definition). Functional images were motion cor-
rected and spatially smoothed using a 5mm full-width
half-maximum Gaussian kernel prior to analysis. Data were
scaled to their global mean intensity and high-pass filtered
with a cutoff period of 128s.

Behavioral analysis

Response time analyses

Bimodality We tested whether response time distributions
within each ISI condition were bimodal, using Hartington’s
Dip Test (Hartigan and Hartigan, 1985). This test measures
the relative spread between modes to the mean of the dis-
tribution – larger values indicate a higher likelihood of true
bimodality in the tested data. P-values are estimated via boot-
strap against distributions with the same summary statistics
as the tested data, provided by the MATLAB function Har-
tigansDipTest (Price and Mechler, 2002).

Permutation tests for across-condition correlations Each
participant performed a different subset of the task condi-
tions (cue level, perceptual coherence). To provide a robust
measure of the relationship between response times and
conditions, we therefore performed a bootstrap analysis,
across participants and conditions (Kim et al., 2014). On
each iteration, we sampled, with replacement, the number
of participants in the study group (30 in Experiment 1, 31 in
Experiment 2).We then computed, on this selected group, the
correlation of interest. By repeating the process 1,000 times,
we obtained a distribution of correlation values across shuf-
fled permutations of the study group. The reported p-value
is thus the fraction of correlation values with a different sign
from the base effect size (the correlation across the entire
original group). When evaluating whether these correlations
differed between conditions (e.g. for coherence levels, or
for early versus late responses), we compared the difference
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between the values obtained for paired bootstrap iterations
(using the same selected subset of subjects). For these tests,
P-values that result from standard nonparametric tests are,
generally, trivially significant, due to the large population
size. Therefore, to evaluate the reliability of the difference
we used Cohen’s d (Cohen, 1988); by convention effect sizes
measured in this way greater than 0.80 are “Large”, and thus
reliable.

Model comparison

Multi-stage DDM Our primary model of interest is an exten-
sion of the drift-diffusion model (Ratcliff, 1978) to allow
for a time-varying drift rate (Srivastava et al., 2016). The
model specifies drift rate as a piecewise constant function,
in which each shift in drift rate defines a separate “stage” of
the sampling process. Critically, the endpoint of one stage
naturally sets the starting point of the next. Our instantia-
tion used two stages. The free parameters were thus the drift
rates, d1 and d2, non-decision time T0, and a distribution of
trial-by-trial first-stage starting points specified by the mean
x0 and standard deviation σx0,1 . We refer to this model as
MSDDM. Our comparison models were matched sequential
sampling processes that each selectively disabled one key
feature of the MSDDM – the time-varying drift rate, and the
connection between stages. The first comparison model of
interest was a single DDM, with continuous sampling until
the time of response, but no change in drift rate across the
entire period between the onset of the fractal stimulus and
response. We refer to this model as 1DDM, with free param-
eters d1, T0, x0, and σx0,1 . The second comparison model of
interest was two DDMs, each fit to pre-stimulus and post-
stimulus responses separately and thus mirroring the change
in drift rate found in MS-DDM, but with the second start-
ing point its own free parameter. We refer to this model as
2DDM, with free parameters d1, d2, T0, and starting points
for each stage, defined by x0,1, σx0,1 and x0,2, σx0,2 . Each
model was fit to participant responses aggregated according
to cue, coherence, and ISI condition. The fitting procedure
minimized the difference between the χ2 of the distribution
of RTs in each cue-coherence-ISI bin and the RT distribu-
tion generated by the chosen model at the given parameters.
Fitting was performed using a genetic algorithm (MATLAB
Global Optimization Toolbox function ga) that ran for 1,000
generations per parameter, at a population size of 50 per
parameter.

Imaging analysis

To identify neural markers of stimulus reinstatement, we first
defined patterns of activity in ventral visual stream regions
that indicated participants were processing “face” or “scene”
photographs.We then analyzed the degree towhich these pat-

terns were present during the post-cue, pre-stimulus ISIs in
Phase 4. Because no pictures were present on-screen during
this period of interest, we reasoned that greater evidence of
stimulus reinstatement would indicate that participants were
recalling the cued photograph. We therefore predicted that
this reinstatement evidence would be reflected in response
accuracies, response times, and DDM model parameters.

ROI definition We identified a region of interest consisting of
voxels that (across the group) showed preferential activation
to face or scene photographs, using the following procedure.

First, for each participant, we performed a GLM analy-
sis of BOLD signal during the localizer task. We identified
voxels that responded more to scenes or faces, relative to
other categories (univariate contrasts: faces> scenes | scram-
bled_scenes | objects; scenes > faces | scrambled_scenes
| objects). For each participant, we selected clusters in the
posterior parahippocampal region (matching the reported
Parahippocampal Place Area (PPA); (Epstein and Kan-
wisher, 1998)) and posterior fusiform gyrus (matching the
reported Fusiform Face Area (FFA); (Kanwisher et al.,
1997)) that were significant at p < 0.005, uncorrected. Next,
each per-participant voxel mask was binarized; all above-
threshold voxels were set to 1. To regularize the ROIs and
ensure they were consistent across participants, the result-
ing individual mask was then warped to match the group
average anatomical; these group-space masks were added
together and the summed image thresholded to include all
voxels present in more than 90% of participants. This final
group ROI was then warped back to the individual partici-
pant space, and the result used as the final mask for pattern
analysis.

Stimulus-specific pattern analysis We computed the pattern
of activity for each target photograph, across the correspond-
ing category-preferring ROI. For each photograph in each
block, we took the average pattern of activity over the last
five presentations of the photograph during Phase 1. (The first
five presentations were excluded to allow repetition suppres-
sion and learning effects to stabilize.)

We next used these four patterns as a template for analyz-
ing activity during the post-cue, pre-stimulus ISI in Phase 4.
For each trial, we computed, within the ROI corresponding
to the cued category, the pattern of activity between the time
of cue onset and either the time of response or one TR before
the onset of the flickering stream, whichever came first. We
then correlated this activity pattern with the corresponding
target pattern, defined above. These correlation values, one
for each Phase 4 trial, were then Fisher-transformed and used
as predictor variables in our analyses of interest. We refer to
these values as the Reinstatement index.
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