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THEORETICAL NOTE

Optimal Metacognitive Control of Memory Recall
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Most of us have experienced moments when we could not recall some piece of information but felt that it
was just out of reach. Research in metamemory has established that such judgments are often accurate; but
what adaptive purpose do they serve? Here, we present an optimal model of how metacognitive monitoring
(feeling of knowing) could dynamically inform metacognitive control of memory (the direction of retrieval
efforts). In two experiments, we find that, consistent with the optimal model, people report having a stronger
memory for targets they are likely to recall and direct their search efforts accordingly, cutting off the search
when it is unlikely to succeed and prioritizing the search for stronger memories. Our results suggest that
metamemory is indeed adaptive and motivate the development of process-level theories that account for the
dynamic interplay between monitoring and control.
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Most of us have experienced moments when we could not recall
some piece of information but felt that we knew it (feeling of
knowing; Hart, 1965), perhaps even sensing that the answer was
imminent and only momentarily blocked (tip-of-tongue; Brown &
McNeill, 1966). These processes whereby people can examine and
make judgments about the content of memory have been termed
“metamemory.” Different from memory itself, metamemory refers
to the higher order processes that monitor and control basic memory
processes (T. O. Nelson & Narens, 1990). In this article, we aim to
characterize the functional role of these processes in supporting
rapid memory recall.
Most empirical work in metamemory has focused on how people

are able to monitor their memory states (Eakin, 2005; Miner & Reder,
1994; Reder & Ritter, 1992) and on the accuracy of metamemory
judgments in predicting future recall (Dunlosky & Lipko, 2007;
Dunlosky & Nelson, 1992; Hart, 1965; Vesonder & Voss, 1985).
Recently, these phenomena have been understood through computa-
tional models of signal detection (Y. Jang et al., 2012) and probability
theory (Hu et al., 2021). Less emphasis, however, has been placed on
understanding the function of metamemory judgments (Schwartz &
Metcalfe, 2017). In a highly influential article, T. O. Nelson and

Narens (1990) proposed that the function of metacognitive systems
is to allow effective control of ongoing cognition (Figure 1). For
example, they outlined a theory in which a dynamically updated
feeling of knowing is used to inform the decision of when to terminate
an unsuccessful recall attempt (Figure 5 in T. O. Nelson & Narens,
1990), echoing an earlier proposal that people quickly terminate a
memory search when no relevant information is found in an initial
search (Glucksberg&McCloskey, 1981). However, despite this early
progress, there is (to our knowledge) still no computational model
of how these feeling-of-knowing estimates might be dynamically
generated nor of how they could be used to control recall efforts.
Consequently, despite intuitively suggestive findings such as longer
search times for items with high feeling of knowing (Gruneberg et al.,
1977; Lachman et al., 1979; T. O. Nelson, 1984; Nhouyvanisvong &
Reder, 1998), it is unclear to what extent metamemory serves an
adaptive function in people.

We believe two challenges have hindered progress in developing
computationally explicit theories of metacognitive control of
memory recall. First, on the empirical front, commonly used
metamemory paradigms rely on self-report as the primary evidence
of people’s metamemory. However, the subjective nature of these
reports makes it difficult to evaluate the objective utility of
metamemory in guiding recall, as we seek to do. Moreover, because
the judgments are most often made after retrieval is completed (or
abandoned), the causal relationship between metamemory judg-
ments and memory search behavior is unclear (Schwartz, 2001). For
example, it is possible that participants report strong feeling of
knowing because they spent a long time searching, rather than vice
versa. Indeed, in perceptual decision making, manipulating response
time (while holding accuracy constant) affects confidence judg-
ments (Kiani et al., 2014). On the other hand, rapid feeling-of-
knowing judgments made before recall (e.g., Reder, 1987) cannot
capture knowledge that only becomes available in the course of
recall (Koriat, 1993; Nhouyvanisvong & Reder, 1998). To address
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this challenge, we developed a metamemory paradigm that allows
us to establish a quantitative, objective measurement of memory
strength before retrieval. An extension of this paradigm in Experiment
2 additionally allows us to see behavioral signatures of metacognitive
control even before retrieval is completed or abandoned, revealing
how the dynamic metamemory process unfolds over time. In this way,
we can directly test our model’s core predictions about how people
will direct their recall efforts depending on the strength of the to-be-
recalled memories.
The second challenge is a technical one. In many domains of

cognitive science, theoretical progress has been spurred by the
development of rational models that optimally solve the problem
that the cognitive system is theorized to solve (Anderson, 1991;
Knill & Richards, 1996; Marr, 1982; Savage, 1954; Tenenbaum &
Griffiths, 2001). Indeed, Anderson and Milson (1989) famously
applied this approach to shed light on basic properties of human
memory. Metamemory, however, poses an especially thorny type
of optimization problem, as it involves a cyclic, “closed-loop”
interaction between two cognitive processes (Figure 1). It is not
obvious how one should quantify the performance of such a system,
let alone identify a system that maximizes this performance. To
address this challenge, we draw on formal tools developed for meta-
level control in artificial intelligence (Hay, 2016; Russell &Wefald,
1991). These tools have recently been applied to model dynamic
metacognitive processes in decision-making contexts, revealing
that people’s behavior is remarkably consistent with models that
optimally trade off utility with cognitive cost (Callaway et al.,
2021; Callaway, van Opheusden, et al., 2022; cf. Chen et al., 2021;
Drugowitsch et al., 2012; A. I. Jang et al., 2021; Tajima et al., 2019).
By applying these tools to a simple model of memory recall, we can
make concrete predictions about the behavior we would expect to
see if people can adaptively control their memory processes.
The remainder of this article is organized as follows. We begin by

reviewing empirical work on meta-level control of memory, focusing
on the control of recall. Then, we define an optimal model of meta-
level control in memory recall and characterize its predictions.
Notably, the model predicts that unsuccessful memory searches
will be longer when the target memory is (judged to be) stronger,

consistent with the findings of Costermans et al. (1992). Next, we
describe a cued-recall experiment that conceptually replicates and
extends those findings. We confirm all key qualitative predictions
of the model and establish moderate quantitative fit. Our second
experiment extends the first by allowing participants to choose
between two possible recall targets. This introduces a more complex
meta-level control problem of selecting which memory to search for
at each moment. Using a keypress-contingent display, we compare
the time course of attention to each cue with the optimal model’s
search predictions and again achieve a strong qualitative and
moderate quantitative fit. We conclude by discussing implications of
the results for metamemory and metacognition research more
generally and identifying interesting directions for further research.

Empirical Evidence for Control in Memory Recall

A number of behavioral studies have already suggested that people
are capable of using their ability tomonitor their memory in the service
of controlling their memory processes. At the acquisition phase, a
large body of work has investigated how people preferentially allocate
study time depending on how well they have learned different pieces
of information (Dunlosky & Hertzog, 1998; Gureckis & Markant,
2012; Metcalfe, 2009). Another substantial literature has addressed
how people choose which memories to maintain or forget (Castel,
2007; Hu et al., 2019; Suchow & Griffiths, 2016; M. Williams et al.,
2013). Here, however, we focus specifically on the control of recall.

Most work on metamemory for recall boils down to one essential
question: How do people decide whether to (continue to) search for a
memory? The initial decision of whether or not to search at all is often
treated as part of a more general strategy selection process (Reder,
1988), with memory search being one of multiple possible strategies
(along with, e.g., looking up the information in a dictionary). The
choice of strategy appears to be driven by an initial feeling-of-
knowing (Nhouyvanisvong & Reder, 1998), which is itself driven by
surface-level properties of the question, such as familiarity with its
terms (Reder & Ritter, 1992). A key finding from this line of work is
that people can estimate the probability that they will be able to recall
a target faster than they can actually recall it (Reder, 1987).
This necessitates some form of metacognitive monitoring, as
participants cannot be making judgments of recallability based on
the outcome of recall if the former precedes the latter.

Once a memory search has been initiated, how long do people
search before giving up? A key finding here is that participants spend
longer before giving up on questions for which they have relevant
information stored in memory (Glucksberg & McCloskey, 1981;
Lachman et al., 1979), as well as those for which they report greater
feeling of knowing (Gruneberg et al., 1977; Nhouyvanisvong &
Reder, 1998) or being in a tip-of-the-tongue state (Schwartz, 2001).
Feeling of knowing and tip-of-the-tongue states are themselves
associated with greater subjective familiarity (Reder, 1988), partial
recall of the target (Brown & McNeill, 1966; Koriat, 1993; Schacter
& Worling, 1985), and the ability to recall given additional
information (Gruneberg & Monks, 1974). Together, these results
suggest that people are able to accurately identify targets they are
likely to recall with further effort and allocate that effort accordingly.

A related finding, although not one central to control, is that
participants give higher confidence judgments when they recall an
answer more quickly (T. O. Nelson & Narens, 1990). In conjunction
with the feeling-of-knowing effects, this produces a striking pattern.
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Figure 1
Illustration of Nelson and Narens’ Theoretical Framework for
Metamemory: A “Meta-Level” Process Monitors and Controls the
Performance of a Basic “Object-Level” Process
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object-level

control
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Note. Adapted from “Metamemory: A theoretical framework and new
findings,” by T. O. Nelson and L. Narens, in Psychology of learning and
motivation (Vol. 26, pp. 125–173), 1990, Academic Press. Copyright 1990
by the Academic Press. Adapted with permission.
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Treating both feeling of knowing and confidence as judgments of
memory strength, we see opposite relationships between judged
strength and response time for successful versus failed recall.
Costermans et al. (1992) demonstrated this pattern in a single study.
On each trial, participants were given a general knowledge question.
Then, if they provided an answer, they gave a confidence judgment; if
theywere unable to provide an answer, they instead gave a feeling-of-
knowing judgment. Costermans et al. found that, on the recall trials,
participants gave higher confidence judgments when they responded
more quickly. But on the omission trials, participants gave higher
feeling-of-knowing judgments when they responded more slowly. In
the following section, we will show that both of these findings are
consistent with a model in which memory recall follows an evidence
accumulation process and search is terminated optimally based on
metacognitive monitoring of the rate of progress.

An Optimal Model of Metamemory for Recall

Following classic theories of metamemory (T. O. Nelson &
Narens, 1990; Figure 1), we specify our model as two interrelated
processes operating at different levels. The object-level process
includes the mechanisms supporting recall itself. Here, we abstract
away from the details of memory search, modeling recall instead as a
simple evidence accumulation process (Ratcliff & Tuerlinckx, 2002;
Sederberg et al., 2008). The meta-level process supervises the

object-level process; it monitors the rate of progress toward recall
and controls how long the search process is allowed to continue.
Here, we assume that the meta-level process is optimal in the sense
that it terminates search when the expected costs of search outweigh
the expected benefits.

Importantly, we do not intend this model as a precise characteriza-
tion of the mechanisms underlying human metamemory nor do we
hope to achieve a close quantitative fit to data (although we do fit
the model using maximum likelihood estimation). Instead, our goals
are to (a) characterize the problem that a metamemory system must
solve and (b) identify qualitative behavioral signatures of a system that
solves this problem well. This will allow us to determine in which
ways people can or cannot deploymetamemory adaptively, potentially
generating clues about the nature of the true underlying cognitive
processes. The model is illustrated in Figure 2; we describe its
components below.

Object-Level Process

Wemodel recall as a process of evidence accumulation. Evidence
accumulation (or “sequential sampling”) models assume that
decisions are made by accumulating noisy information over time
until a threshold level of evidence is reached. They have been widely
applied in the decision-making (Busemeyer & Townsend, 1993;
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Figure 2
A Dynamic Model of Metamemory

Note. Bottom: The object-level recall process is modeled as evidence accumulation. A memory is recalled when a threshold level of
evidence is accumulated (blue star). The average rate of accumulation corresponds to the strength of the memory. Top: The meta-level
process monitors and controls the object-level recall process. This is modeled as a Markov decision process (MDP) where the states
(circles) correspond to beliefs about the memory’s strength and the actions (squares) determine whether the search continues; the
rewards (diamonds) capture the cost of the search and the utility of recalling a memory. Solving this MDP yields an optimal policy for
determining when to stop searchingmemory based on partial recall progress (pink octagon). See the online article for the color version of
this figure.
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Ditterich, 2006; Krajbich et al., 2010; Usher & McClelland, 2001)
and memory (Ratcliff, 1978; Sederberg et al., 2008) literatures and
are successful in accounting for the effects of various experimental
manipulations on accuracy and response times during recognition
and recall tasks (Ratcliff & Tuerlinckx, 2002; Sederberg et al., 2008;
Yonelinas et al., 2010). In our model, the “evidence” captures
progress toward recalling a target. Thus, when a threshold level of
evidence is reached, the target is recalled (blue star in Figure 2).
Concretely, at each time point t, the current recall progress zt is

incremented by a sample from a Gaussian distribution,1

zt = zt− 1 + xt where xt ∼N ðv, σ2xÞ. (1)

The mean of this distribution, v, controls the rate of accumulation;
it is often called the drift rate (illustrated as a thin dashed blue arrow
in Figure 2). In our model, it captures the strength of the memory.
The noise σ2x captures the consistency of that progress. The target is
recalled when the total progress exceeds a threshold θ.

Meta-Level Process

The problem of deciding when to cut off an unsuccessful memory
search is addressed by the meta-level process. That is, the meta-level
process controls how long the object-level process is allowed to
continue. How should it do so? From a rational perspective, one
should keep searching as long as the probability of recall multiplied
by the utility of recall is greater than the expected cost of search
(Anderson &Milson, 1989). Putting this logic into notation, we can
define the optimal meta-level action as

a* =
�
SEARCH if pðrecallÞ ⋅ UðrecallÞ > E½costðsearchÞ�
STOP otherwise

; (2)

where U stands for utility. The challenge lies in estimating p(recall)
and E[cost(search)]. In our evidence accumulation model, these
values correspond respectively to the probability that the evidence
will eventually cross the threshold and the time point at which this
occurs.
Intuitively, one could accurately estimate the probability and cost

of future recall if one knew the strength of the target memory, v.
However, a key assumption of our model—and the metamemory
literature more broadly—is that the meta-level process does not have
direct access to this information. Instead, we assume that the meta-
level process must infer the memory’s strength by monitoring the
object-level process. The existence of such a monitoring process is
widely agreed on; however, its precise nature is controversial.
In particular, it is unclear to what extent monitoring tracks the
underlying memory strength (Hart, 1965), partial recall progress
(Koriat, 1993), or superficial cues that happen to be predictive of
recall (Reder & Ritter, 1992; Schwartz & Metcalfe, 1992).
Resolving this debate is beyond the scope of this article. Thus,
for simplicity and tractability, we assume that the meta-level process
directly observes the state of the object-level process. We emphasize
that this is purely a simplifying assumption and not a claim about
how people actually monitor their memory. We return to this point
in the discussion.
Concretely, we assume that the meta-level process observes the

current recall progress zt and the time spent so far t, which provides a
complete summary statistic for the entire sequence up to time t.

Given this information, the meta-level process then infers a posterior
distribution over the strength of the memory,

pðvjt, ztÞ = N ðv; μt , σ2t Þ
μt =

ztσ−2x + μ0 σ−20
σ−2t

σ2t = 1
tσ− 2

x + σ− 2
0

; (3)

where μ0 and σ20 encode the agent’s prior, N ðμ0, σ20Þ. To build
intuition, note that with a very weak prior (large σ20), μt reduces to
zt/t, the average rate of recall progress. This time-varying belief
about the strength of a memory formalizes the concept of feeling of
knowing.

Given this estimate of memory strength, how should the meta-
level process determine whether to continue searching? That is, how
should monitoring inform control? One intuitively appealing
strategy is to estimate future recall progress by repeatedly applying
Equation 1, compute p(recall) and E[cost(search)] from those
estimates, and then choose the optimal action by Equation 2.
However, this strategy fails because it implicitly assumes that the
object-level process will be allowed to continue indefinitely—
precisely what the meta-level process is intended to prevent. The
decision of whether to stop is not made just once; it is continually
remade at each time step. As a result, the probability and cost of
recall—and therefore the optimal stopping decision—depend on
one’s future stopping decisions.

Thus, we see that metamemory poses a particularly thorny type of
decision problem, one where one’s current choice depends on one’s
future choices. That is, metamemory poses a sequential decision
problem. Fortunately, a great deal of work in artificial intelligence
has focused on solving exactly this sort of problem, typically using
the formalism of Markov decision processes (MDPs). An MDP is
defined by a set of states the environment can be in S, a set of actions
the agent can take A, a transition function specifying how actions
change state T, and a reward function specifying the agent’s goals r.
MDPs are the key formalism underlying reinforcement learning
(RL; Sutton & Barto, 2018), supporting recent advances in artificial
intelligence (Mnih et al., 2015; Silver et al., 2017), as well as
providing a foundation for the psychology and neuroscience of
decision making (Dayan &Daw, 2008; Glimcher, 2011; Niv, 2009).

The insight that meta-level control poses a sequential decision
problem has been formalized by the field of rational metareasoning
(Russell & Wefald, 1991), which has the goal of building artificial
intelligence that makes efficient use of their limited computational
hardware. In particular, we apply the framework of meta-level
Markov decision processes (Hay et al., 2012), which models the
meta-level control problem as an MDP. In a meta-level MDP, the
states correspond to beliefs about the world and the actions
correspond to computations (or cognitive operations) the agent can
execute. The transition function describes how computations update
beliefs, and the reward function encodes the cost of computation as
well as the benefits of acting according to a more refined belief.

In our meta-level MDP model, a state s ∈ S captures both the
current recall progress as well as the belief about memory strength
(feeling of knowing). Because the belief depends only on the recall
progress and time spent so far (Equation 3), the state can be
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1 The exact choice of distribution is arbitrary. We use a Gaussian for
mathematical convenience. Anecdotally, we found similar qualitative
predictions with a Bernoulli distribution, but this model had a worse
quantitative fit.
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compactly represented as st = (t, zt). There are two possible actions
a ∈ A: SEARCH continues searching for the memory and STOP
terminates recall.
The reward function r encodes the benefit of recall and the cost

of search:

rðst , atÞ =
8<
:

UðrecallÞ if zt ≥ θ
−γSEARCH if at = SEARCH
0 if at = STOP;

(4)

where U(recall) specifies the utility of correct recall (capturing, in
our case, experimental incentives) and γSEARCH is a free parameter
that specifies the cost of searching for one-time step (capturing any
experimentally imposed costs as well as implicit costs such as the
opportunity cost of the time spent searching).
Finally, the transition function T captures the evidence accumula-

tion dynamics of the object-level process and the fact that STOP
terminates search. Note, however, that the object-level dynamics
depend on the true memory strength (v in Equation 1), which the
agent does not have access to. Thus, the transition function must
marginalize over the strength according to the current belief state:

Tðst+ 1jst , aÞ = pðzt+ 1jt, ztÞ
=
ð
pðzt+ 1jzt ,vÞpðvjt, ztÞdv

=
ð
N ðzt+ 1 − zt jv, σ2xÞN ðvjμt , σ2t Þdv

= N ðzt+ 1 − ztjμt , σ2x + σ2t Þ.

ð5Þ

The two substitutions in the third line follow from Equations 1
and 3, respectively. The final line is a standard property of Gaussian
distributions (Murphy, 2007).

Optimal Policy

We have now defined a meta-level MDP that formalizes the
problem of deciding when to give up on recalling a memory. The
final step is to specify a strategy for solving that problem. In MDP
terms, we need to specify a policy π that chooses which action to
take in each state. Here, we focus on the optimal policy, which is the
one that maximizes the total expected reward. As detailed in the
methods, we can identify this policy by computing the optimal value
function V*, which specifies the maximal total reward one could
expect to gain starting from any given state. To build intuition, we
can factorize V* for the current model into two components,
capturing the utility of recall and the cost of search,

V*ðstÞ = pðrecall j stÞUðrecallÞ − ðE½tmax j st � − tÞγSEARCH, (6)

where tmax is the time step on which the item is recalled or the search
is terminated. The optimal policy is then defined as

π*ðstÞ =
�
SEARCH if Est+ 1 ∼ Tð⋅jst , SEARCHÞ½V*ðst+ 1Þ� > γSEARCH
STOP otherwise

.

(7)

To understand this equation in comparison to Equation 2, note
that p(recall) and cost(search) have each been split into two
components, capturing immediate versus future outcomes. The
immediate recall probability is encoded in the transition function,

Tð· jst , SEARCHÞ; the immediate search cost is encoded in the
reward, −γSEARCH. The expected future outcomes are both
integrated into V*(st + 1), as shown in Equation 6. A key
advantage of specifying our model as an MDP is that we can apply
standard techniques (in particular, backward induction) to compute
V*, allowing us to identify an optimal policy for metamemory. See
the Method section below for details.

Predictions

As illustrated in Figure 3, the model makes two key predictions
regarding the relationship between memory strength and response
time. First, stronger memories should be recalled more quickly
because stronger memories accumulate progress faster and hit the
threshold sooner. Note that this prediction is a simple consequence
of the object-level process and does not depend on metacognition.
Second, stronger memories should be abandoned less quickly. In
particular, while the meta-level process can quickly identify very
weak memories as such (leading it to terminate the search),
marginal-strength memories produce ambiguous evidence and it
takes more time for the meta-level process to determine that the
memory is too weak to justify further search.

Figure 3 also highlights that the optimal policy can be represented as
a time-varying threshold, such that the search is terminated if the
progress ever falls below the threshold (cf. Drugowitsch et al., 2012). In
the language of Marr (1982), this can be understood as an algorithmic-
level implementation of the computational-level theory outlined above.
We return to this point in the General Discussion section. Note that the
threshold is nonmonotonic because a fixed amount of negative progress
provides stronger evidence that the memory has low strength if the
negative progress was generated more quickly.

Experiment 1

In our first experiment, we sought to replicate and extend the
findings of Costermans et al. (1992) in a cued-recall setting (Figure 4).
The key finding from the original study was that participants reported
higher confidence judgments on trials where they more quickly
recalled the answer to a question but lower feeling-of-knowing
judgments when theymore quickly reported being unable to recall the
answer. Our model can capture both of these effects under the
assumption that the metamemory judgments are based on the inferred
memory strength at response time (explained below). However, it is
also possible that the metamemory judgments reflect a purely post
hoc rationalization of the longer response time, not influencing the
decision to stop at all. To avoid this reverse-causality concern, we
modified the task such that we could obtain objective measures of
memory strength before the critical trials. Specifically, we used a
cued-recall paradigm that allowed us to query the same targetmultiple
times. This allowed us to test whether people’s stopping decisions
depended on their true memory strength, as the optimal policy
predicts they should.

Method

Participants

We recruited 612 participants through Prolific with the restriction
that they reported current U.S. or U.K. residence, had at least a 95%
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approval rating, and had not participated in any pilot studies. As
preregistered, we excluded 106 (17%) participants who did not
provide a response on more than 90% of critical trials.2 This yielded
506 participants in our final analysis. The target sample size of 500
participants had over 95% power with α= .05 for all our preregistered
hypotheses based on a boot-strapping power analysis conducted on
pilot data. This experiment was approved by the institutional review
board of Princeton University (Protocol Number 10859).

Stimuli

Each participant was randomly assigned 40 images and words,
which were arbitrarily paired. The images were randomly sampled
from 40 common scene categories (one image per category),
selected from the Scene UNderstanding database (Xiao et al., 2010).
We manually removed photos that contained a person. All images
were resized and then cropped to 300 by 300 pixels. The words were
selected randomly from those used in Madan (2021), which were
themselves selected from the University of South Florida free
association norms word database (D. L. Nelson et al., 2004).

Procedure

The experiment consisted of four phases: exposure, distractor,
pretest, and critical. After learning the mapping between images and
words through a single round of passive exposure, participants
solved simple arithmetic problems to clear working memory. They
then completed the pretest and critical trials, both of which involved
cued recall. In the pretest trials, participants were given an image and
asked to type in the corresponding word; they were incentivized to
be both accurate and fast. These trials provide an objective measure
of how well each participant had learned each pair. In the critical

trials, we increased the speed incentive and added an error penalty.
However, we also allowed participants to skip a trial without
penalty, still earning the speed bonus. This creates an incentive to
quickly identify trials in which the target is unlikely to be correctly
recalled. We provide further details on the procedure for each of
these components below.

Exposure. On each exposure trial, participants viewed a word
superimposed on the center of an image; the word was printed in
white font with black outlines such that it would be clearly legible on
any image. The word–image pair was shown for 2 s, with a half-
second intertrial interval. Each of the 40 pairs was shown once.

Distractor. On each distractor trial, a simple arithmetic
problem was presented and participants had 3 s to enter the correct
answer. Each problemwas an addition of three single-digit numbers.
After a response (or time-out), feedback was presented for at least 1
s. If a response was made before the deadline, the feedback phase
was extended such that all trials lasted exactly 4 s. Participants were
informed that they would earn one cent for each correct answer. Due
to a programming error, participants were incorrectly instructed that
they would have 5 s to enter a response; however, no participant
reported noticing this discrepancy in the debriefing survey.

Pretest. Each pretest trial began with a blank screen and the text
“press space when ready.” When the participant pressed space, an
image, text box, and timer appeared. The timer immediately began
counting down from 15 s. The trial ended when the participant
entered a word (by typing it into the text box and pressing enter) or
when the timer expired. If the timer expired, “time-out” appeared in
large red letters. No other trial-by-trial feedback was provided.
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Figure 3
Experiment 1: Optimal Policy and Predictions

time
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slower to skip stronger memories

faster to recall stronger memories

stay

switch

Note. The optimal policy partitions the state space into two sections, one (blue) in which the policy continues searching and
another (pink) in which it terminates search. The response time for each trial is thus given by the first time point at which the
recall progress either exceeds the threshold (recall) or enters the pink region (no recall). In the former case, stronger memories
(lighter lines) will result in faster responses because such memories accumulate progress and hit the threshold faster. In the latter
case, stronger memories will result in slower responses because such memories can hover in the search region before ultimately
hitting the stop region. This plot was generated with parameters fit to the data in Experiment 1. See the online article for the color
version of this figure.

2 This slightly high exclusion rate may reflect the difficulty of learning
from a single round of exposure. Pilot studies indicated that longer learning
phases resulted in very few skips.
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Participants were instructed that they would receive one cent for
each correct answer, as well as a small extra bonus for answering
quickly and correctly. (The time bonus was a quarter of a cent
multiplied by the proportion of time left when a response was
given.) At the end of each block, participants received a summary of
their performance, separately indicating the amount of bonus money
they made from correct responses and response speed. There were
two blocks, and each image–word pair was shown once in each
block, for a total of 80 trials (two presentations of each pair). The
first trial in the first block was a practice trial and was excluded from
the analysis.
Critical Trials. The critical trials were similar to the pretest

trials but with a different incentive scheme. The bonus for correct
responses was increased to three cents, but a one-cent penalty for
incorrect responses was introduced. Additionally, participants could
skip a trial by pressing enter without typing a word; this did not incur
a penalty. Finally, the speed incentive was raised to a tenth of a cent
for each second left on the timer (i.e., up to 1.5 cents per trial).
The speed bonus was given on all trials, including skip and error
trials. To ensure that participants understood the incentives, they
were required to pass a quiz, affirming that there was a penalty for
mistakes, no penalty for skipping, and a time bonus regardless of
response type. Participants were additionally encouraged to quickly
skip trials for which they did not know the word.
After a response was given, a metamemory judgment was elicited.

When participants gave a response, they were asked “How confident

are you in your response?” They then pressed a number between 1
and 5 to indicate that they were “not at all sure,” “not so sure,” “more
or less sure,” “nearly sure,” or “absolutely sure” that their response
was correct. If they did not give a response (i.e., they skipped the
trial), they were asked “How much do you feel that you know the
word?” again pressing a number between 1 and 5. The responseswere
described as “I am absolutely sure I do not know the word,” “I am
rather sure I do not know the word,” “I have a vague impression I
know the word,” “I am rather sure I know the word,” and “I am
absolutely sure I know the word.”

Each image–word pair was shown once. The first three trials were
practice trials that did not count toward the participant’s bonus andwere
not analyzed. This leaves 37 analyzed critical trials per participant.

Modeling

Computing the Optimal Policy. We compute the optimal
policy by backward induction. See Puterman (2014, p. 92) for a
general description of the method; here, we report the details
necessary to apply the method to our model.

Recall that a belief state in the model is a tuple (t, zt). Because
backward induction can only be applied in finite state spaces, we
begin by discretizing the progress dimension of the belief into 100
equally sized bins, ranging from−θ to θ. Note that θ is the maximum
possible value zt can take. The lower bound of −θ is an arbitrary
choice; we found that the optimal policy for well-fitting parameters
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Figure 4
Experiment 1: Procedure

recall

skip

Correct! +3¢
Time bonus: + 0.8¢

Incorrect! -1¢
Time bonus: + 0.8¢

distractor

your response?

How much do you feel that 
you know the word?

Press a number between
1 and 5.

Press a number between
1 and 5.

No Response. 0¢
Time bonus: + 0.8¢

correct

incorrect

exposure pretest(A)

(B)

critical

elepha

5 + 3 + 9elephantelephant

Note. (A) Participants viewed 40 image–word pairs for 2 s each (exposure). They then completed simple math problems
for 60 s (distractor). Next, they attempted to recall the word associated with each image, two trials per image (pretest).
Finally, they completed one critical trial for each image. (B) Critical trials were similar to pretest trials, except that incorrect
responses were penalized. The penalty could be avoided by providing an empty response, “skipping” the trial. After giving a
response, participants made a metamemory judgment: confidence if they had entered a word, feeling of knowing if they had
not. A speed bonus was given regardless of the response. See the online article for the color version of this figure.
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always terminated well before this value was reached (e.g.,
Figure 3), suggesting that this imposed lower bound did not
meaningfully affect the solution.
We first computed the transition function. To account for the

discretization, we computed the probability of transitioning from
(t, zt) to (t + 1, zt + 1) as Prðbbot < zt+ 1 < btopjt, ztÞ where bbot and
btop are the boundaries of the bin with zt + 1 in the center. Because
zt+ 1jt, zt is Gaussian (Equation 5), we could compute this quantity
with standard statistical library functions (the normal cumulative
distribution function). For most bins, the boundaries were zt + 1 ± θ/
100. The top bin was clipped at btop = θ, and the bottom bin was
unbounded, with bbot = −∞. This ensures that the transition
probability from each state sums to one.
Next, we initialized the value function for all terminal belief

states. The value of states with zt = θ is U(recall) and the value of
states with t= 150 (the maximum trial duration) but zt< θ is 0. Then,
we iterated backward in time, computing the value of all states with
t = 149 as the maximum of the expected value of each possible
action

V*ðsÞ = max
a∈fSEARCH;STOPg

Q*ðs, aÞ ; (8)

where

Q*ðs, SEARCHÞ =
X
zt+ 1

pðzt+ 1jt, ztÞ

V*ðt + 1; zt+ 1Þ − γSEARCH, (9)

and Q*(s, STOP) = 0. The iteration continues with t = 148 down to
t = 1. After computing Q* for all states and actions, the optimal
action in each state can be quickly identified as

π*ðsÞ = argmax
a∈fSEARCH;STOPg

Q*ðs, aÞ. (10)

Simulation Procedure. In order to compare the behavior of
the model with that of our participants, we simulated experimental
data. Simulating a trial corresponds to executing one “episode” of
the meta-level MDP. That is, we initialized the state at s0= (t= 0, zt
= 0) and then repeatedly applied Equation 1 to generate a sequence
of states.3 At each time step, we first checked if the recall threshold
has been exceeded, that is, if zt < θ. If so, the episode ended and the
trial was classified as a recall trial. Otherwise, we determined the
optimal action π*(st), defined in Equation 7. If the optimal action
was STOP, then the episode ended and the trial was classified as a
skip trial. Otherwise, we repeated the process, unless the maximum
time step had been reached, in which case the episode ended as a
skip trial.
The simulated response time was determined based on the final

value of t. We assumed that response times reflected both time spent
actively searching memory as well as “nondecision time” (NDT)
spent on, for example, perceptually encoding the cue and preparing
the motor response. For search time, we assumed that each time step
took a fixed amount of time, a value we arbitrarily set to 100 ms (the
predictions of the model do not depend critically on this parameter;
we chose 100 ms to balance prediction fidelity with model runtime).
For NDT, we assumed that it was drawn separately for each trial
from a gamma distribution, with parameters fit to data as described
below. The simulated response time was the sum of the two

components. Note that, for computational reasons, we did not factor
the NDT into the time-out condition (the maximum time step of 150
is the maximum trial duration of 15 s divided by 100 ms). This has a
negligible effect on model predictions because time-outs were rare
(less than 0.01% of trials) with well-fitting parameter values.

The simulated metamemory judgments (confidence and feeling of
knowing) were determined based on the posterior mean μt at the final
time step, that is, when the target was recalled or the policy terminated
the search. To account for factors contributing to the judgment
besides those captured by our model (e.g., individual differences in
scale usage), we first corrupted μt with Gaussian noise, arbitrarily
setting the variance to σx/2. We then binned the continuous measure
into five bins, corresponding to the 1–5 response scale.We set the bin
boundaries separately for each judgment type in order to match the
proportion of each response in the human data.

In order to capture the relationship between performance in the
pretest and critical trials, we simulated both phases using the
following procedure. For each simulated word/image pair, we
sampled its memory strength v from the prior distributionN ðμ0,σ20Þ.
The parameters of the prior are free parameters of the model. Next,
we simulated the two pretest trials for that pair by rolling out two
episodes of the meta-level MDP. For these trials, we set U(recall) to
the experimentally imposed value of one cent. The search cost
γSEARCH is a free parameter. We then simulated the critical trial for
the pair, setting U(recall) to the new value of three cents and
increasing γSEARCH by the experimentally imposed value of 0.01
cents per sample (0.1 cents per second and 100 ms per sample).

Parameter Estimation. The model’s behavior is governed by
six free parameters: the prior mean and standard deviation, μ0 and
σ0, the progress noise σx, the search cost γSEARCH, and the mean and
shape of the NDT distribution, μNDT and αNDT.4 We arbitrarily fixed
the threshold θ = 1 as it is not identifiable along with the other
parameters. We set these parameters by maximizing the likelihood
of the critical trials at the group level. For fitting, we disregarded the
metamemory judgment. Each trial (human or simulated) was thus
defined by a pretest accuracy rate (0%, 50%, or 100%), a response
type (skip or recall), and a response time (discretized into 100 ms
bins from 0 to 15,000 ms).

Because the optimal policy does not depend on the NDT
parameters, we treated these separately (described below). For the
remaining four parameters, we considered 50,000 configurations
sampled pseudorandomly according to the Sobol sequence (Bergstra
& Bengio, 2012; Sobol’, 1967) within the range, μ∈ (−0.5, 0.5), σ0∈
(0, 1), σx ∈ (0, 1), γSEARCH ∈ (0, 0.05). For each configuration,
we computed the optimal policy by backward induction and then
simulated 100,000 critical trials. For each simulated data set, we
constructed a 3 × 2 × 151 histogram over possible trials (three
accuracy rates, two response types, and 151 response time bins). To
apply the NDT model, we convolved this histogram with a Gamma
distribution parameterized by μNDT and αNDT. Finally, to ensure
nonzero probability was assigned to all trials, we mixed the model-
predicted distribution with a uniform distribution with weight 10−6.
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3 Note that we simulate data conditional on a known strength v rather than
with the transition function that marginalizes over v. This allows us to model
multiple trials for a single cue/target pair, as described below.

4 We use this parameterization rather than the traditional shape-scale
parameterization to aid interpretability. The mean is the scale parameter
multiplied by the shape parameter.
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The likelihood of each trial in the human data set is simply the
corresponding entry of this histogram. The total log-likelihood is the
sum of the log-likelihood for each trial.
Note that the NDT-convolution step does not require simulating

the model. We thus optimized the NDT parameters for each
configuration of the other four parameters using the Nelder–Mead
algorithm (Nelder & Mead, 1965). This provides the best possible
likelihood for each configuration of the four primary parameters. We
then selected the top 5,000 such configurations and approximated
the likelihood more precisely, using 1,000,000 simulated trials.
The best-performing configuration from this smaller set was then
identified as the maximum likelihood estimate (MLE). The MLE
was μ0 = −0.002, σ0 = 0.186, σx = 0.139, γSEARCH = 0.014, μNDT =
717, αNDT = 8.70 with negative log-likelihood 69,698. Note,
however, that this exact number is arbitrary because it depends on
the coarseness of the response time discretization.
Lesioned Model Without Meta-Level Control. In order to

distinguish between model predictions that depend only on the
object-level process versus those that reflect adaptive meta-level
control, we implemented a lesioned version of the model that lacks
the control component. In this model, the decision to stop searching
is no longer made by the optimal policy; instead, it is made
randomly. Concretely, when simulating a trial from this model, we
begin by sampling the stopping time from a Gamma distribution.
We then apply Equation 1 until either (a) the threshold is crossed,
resulting in a correct trial as in the optimal model, or (b) the
predetermined stopping time is reached, resulting in a skip trial. This
model has all the parameters of the main model except γSEARCH,
which only influences the optimal policy. It has two additional
parameters for the stopping time distribution.
The parameters are fit by maximum likelihood estimation using

the procedure described above. The MLE was μ0 = 0.278, σ0 =
0.156, σx = 0.019, μstop = 250, αstop = 56.56, μNDT = 1,261, αNDT =
2.17 with negative log-likelihood 73,840. We also considered a
version of the lesioned model that sampled stopping times directly
from the empirical distribution. This model fit the data worse
(negative log-likelihood of 76,485; see Appendix B).

Statistical Analyses

All reported regressions are linear mixed-effects models with
random slopes and intercepts for each participant. We use logistic
regression for binary outcome variables and linear regression
otherwise. We report nonstandardized regression coefficients
throughout, with time in units of seconds, accuracy as a proportion
(0–1), and judgments in the original 1–5 scale. Degrees of freedom
are estimated using the Satterthwaite method. As mentioned above,
we excluded 106 (17%) participants who skipped more than 90% of
nonpractice critical trials. We also exclude all trials with incorrect
responses: 905 (5%) intrusions and 1,153 (6%) unclassified errors,
as well as 207 (1%) time-out trials. This leaves only the correct recall
and skip trials. Finally, we excluded one trial with a response time
under 30 ms (as planned but not explicitly preregistered).
In the experiment itself, responses were considered correct only if

they matched the target word exactly (ignoring white space and
capitalization). When analyzing the data, however, we additionally
marked as correct any response for which a spellchecker (implemented
in the pyspellchecker package) identified the correct word as a possible

intent of the given response. Similarly, responses with a single
character were treated as skip trials.

In order to eliminate typing-related variance in response time, we
defined response time as the time between stimulus presentation and
the first key press initiating the response. If the input box was ever
cleared (presumably because the participant changed their mind
about which word to enter), response initiation time is defined as
the last key press when the text box was empty (i.e., the beginning of
typing the final response). For skip trials (indicated by submitting an
empty response), we use the time the final response was made,
ignoring any earlier typing (of which there was usually none).

Transparency and Openness

All sample sizes, exclusion criteria, statistical analyses, modeling
procedures, and plotting decisions were preregistered (https://aspredi
cted.org/wr9ej.pdf). After preregistering, we discovered a conceptual
error in our specification of a null model. This led us to remove one
plot that we discovered the more flexible null model could capture
(indicating that the plot was not actually a good test of rational
metamemory). See Appendix B for details, including the removed
plot. Additionally, we previously ran a preregistered version of this
experiment with a smaller sample size and a slightly different analysis
(which produced a marginally significant result). See Appendix C for
details, including full results with the previous data set.

Results

Preliminary Analyses

Before addressing the model’s key predictions, we first describe
participants’ basic task performance.5 Overall, participants correctly
recalled the target in 35.9% of trials and skipped 52.0% of trials. Of
the remaining trials, 4.8% were intrusions, 6.2% were unclassified
errors, and 1.1% were time-outs. This second group of trials cannot
be explained by the model because we do not model competition
between items in memory nor the attentional lapses that lead to
timing out (one should always skip before hitting the time limit to
avoid the penalty). Thus, as preregistered, we focus all remaining
analyses on the correct recall and skip trials, excluding errors and
time-outs.

As shown in Table 1, recall rate in the critical trials varied strongly
with recall rate in the pretest trials, from 1.5% for targets that were
never correctly recalled in the pretest to 94.4% for targets that were
correctly recalled in both pretest trials. Targets that were recalled
correctly on only one pretest trial yielded an intermediate rate of
55.9%.6 All three levels of pretest accuracy are represented fairly
well, with the 50% case accounting for the smallest proportion of
trials (5.4%), and all three models capture this distribution well.
However, the optimal model systematically overpredicts recall rates,
especially for the 50% trials. One plausible explanation for this
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5 The analyses presented in this section were added based on reviewer
suggestions and were thus not preregistered.

6 This case can be further divided into cases in which the correct response
was provided on the first or the second pretest trial, with recall rates of 35.0%
and 73.4%, respectively. This difference could be captured in the model by
including a decay or drift in memory strength between trials. For simplicity,
however, we do not consider such sequential effects and collapse across the
two cases in the remaining analyses.
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discrepancy is that the model invests more effort into recall on the
critical trials because the payoff is three times higher than on pretest
trials. People may be undersensitive to this change in incentives
(cf. van den Berg et al., 2023).
Table 2 shows the distribution of confidence and feeling-of-

knowing judgments. As expected, we see that people tend to give
high confidence judgments (after providing an answer) and low
feeling-of-knowing judgments (after declining to provide an
answer). However, the full range of responses is covered in both
cases. Both types of judgments were accurate in the sense that they
reflected performance in the pretest, confidence: B = 0.575, 95% CI
[0.451, 0.698], t(287.6) = 9.14, p < .001; feeling-of-knowing:
B = 1.209, 95% CI [1.023, 1.394], t(176.6) = 12.77, p < .001.
Additionally, for all trials where a response was given, the
confidence judgments were predictive of accuracy (B = 1.360, 95%
CI [1.258, 1.462], z = 26.18, p < .001), from 15.9% at the lowest
level to 94.9% at the highest.
Having established the expected basic relationships between pretest

accuracy, recall in the critical trials, and metamemory judgments, we
now turn to our primary response time analyses.

Metamemory Judgments and Response Time

As illustrated in Figure 5A (right), we replicated the basic pattern
reported by Costermans et al. (1992). Participants were faster to
correctly recall targets that they reported greater confidence in (B =
−0.244, 95% CI [−0.294, −0.194], t(516.1) = −9.54, p < .001), but
slower to skip targets that they reported higher feeling-of-knowing for
(B = 0.385, 95% CI [0.309, 0.460], t(189.1) = 10.02, p < .001). The
confidence effect indicates that people’s metamemory judgments
correlate with true memory strength (assuming that stronger memories
are recalledmore quickly), suggestive of metacognitive monitoring. In
contrast, the feeling-of-knowing effect suggests that participants spent
longer trying to recall targets that they thought theyweremore likely to
recall, a form of metacognitive control.

To capture these metacognitive judgments in the model, we
assume that the judgment (confidence or feeling of knowing) is
made based on the inferred evidence accumulation rate at the end of
the trial (see the Simulation Procedure section). Unsurprisingly,
the optimal model infers a higher accumulation rate when a word
is recalled faster and thus produces higher judgments. More
importantly, it gives higher feeling-of-knowing judgments for
cues that it took longer to skip. A lesioned model with the same
object-level process but no metalevel control (sampling skipping
times randomly; see the Method section) failed to capture either
effect. Interestingly, with some parameter values, the lesioned
model can capture either effect in isolation. However, it was not able
to predict both effects at once with any parameter configuration
(see Appendix D).

Pretest Accuracy and Response Time

While the above results are suggestive, the direction of causation is
not clear. The metamemory judgment temporally follows the
response; thus, it is entirely possible that participants are actually
reporting higher feeling-of-knowing judgments because they spent
longer searching. To test whether participants stopping times are truly
influenced by an awareness of the memory’s strength, we can replace
the metamemory judgment with an objective measurement of
memory strength, concretely, the proportion of pretest trials in which
the target was recalled correctly. As shown in Figure 5B, the model
predicts a similar pattern: faster recalls and slower skips with
increasing pretest accuracy.7 People were likewise faster to recall
targets that they had previously recalled correctly (B = −0.978, 95%
CI [−1.215,−0.742], t(253.3) = −8.11, p < .001). More importantly,
they were also slower to skip such targets (B= 0.404, 95% CI [0.251,
0.558], t(193.7) = 5.16, p < .001). The lesioned model could not
produce this effect with any parameter values. These results suggest
that participants’ decisions to stop searching depended on a
metacognitive awareness of how likely they were to recall the target.

Discussion

In this experiment, we found that participants were faster to recall
targets with higher strength but slower to give up on targets with
higher strength. Importantly, this pattern held for both a subjective
measure of strength (replicating Costermans et al., 1992) as well as
an objective measurement of strength (accuracy on the pretest trials).
The latter is critical because it shows that people spent longer
searching for memories that they were actually more likely to recall,
thus demonstrating the objective utility of metamemory in guiding
recall. Furthermore, because pretest accuracy is defined before the
critical trials, this measure is not subject to the reverse-causality
concern that response times are driving feeling of knowing rather
than vice versa (Schwartz, 2001).

The full pattern of results was qualitatively consistent with the
optimal model, which terminates search when the expected value of
search falls below the expected cost, and reports a Bayesian estimate of

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Table 1
Recall Rates in Critical Trials by Pretest Accuracy

Model/Data 0% 50% 100%

Optimal metamemory .039 (.512) .668 (.071) .974 (.417)
No meta-level control .033 (.600) .518 (.082) .934 (.319)
Human .015 (.554) .559 (.054) .944 (.391)

Note. Each cell shows the recall proportion conditional on pretest
accuracy. The proportion of trials at the given pretest accuracy level is
shown in parentheses. The human values exclude error and time-out trials.
See Table A1 in Appendix A for the proportions of all response types.

Table 2
Distribution of Metamemory Judgments

Judgment 1 2 3 4 5

Confidence (recalled) .023 .039 .118 .211 .609
Feeling of knowing (skipped) .820 .107 .048 .009 .016

Note. Each cell shows the proportion of a given level of confidence/
feeling-of-knowing judgment. Note that the models are fixed to have the
same proportions (see the Method section).

7 The nonmonotonic prediction for skip trials is due to a selection effect:
the optimal model only skips high-strength memories when it greatly
underestimates the strength. This becomes increasingly unlikely as the trial
progresses and more evidence is collected. Thus, these “erroneous” skips
generally occur quickly (cf. the “fast errors” phenomenon in decision making
Ratcliff & Rouder, 1998).
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strength as feeling of knowing or confidence. Perhaps more
importantly, the results could not be captured by a model without
meta-level control. This provides computational support for the
intuition that the correlation between search time and feeling of
knowing is a distinctive signature of an adaptivemetamemory process.

Experiment 2

In our first experiment, we considered a very simple form of
metamemory, the decision of how long to search memory before
giving up. Control of memory is not limited, however, to such a
simple kind of decision. Instead, successful recall often requires
deciding between multiple strategies for finding an answer (Reder,
1988). Going further, Koriat (2000) had characterized recall as a
form of problem solving, with a meta-level process “coordinating
between different operations directed toward the recovery of the
elusive memory” (p. 334). A careful characterization of the
operations underlying recall (let alone how they are chosen) is
beyond the scope of this article. Nevertheless, in our second
experiment, we sought to characterize a core aspect of this richer
form of metamemory: monitoring multiple target memories and
allocating retrieval efforts between them.

On each trial, participants were presented with two cues and could
recall the target for either one of them (Figure 6). They thus had to
make a metacognitive decision about which of the two possible
targets to search for at each moment. In order to observe how this
selection process unfolded over time, we used a keypress-contingent
display, such that only one cue was visible at any moment. This
provides process-tracing data similar to eye tracking, but in a format
amenable to online presentation.

Predictions

As detailed below, we extended the model to the multiple-
memory case by creating a separate evidence accumulation process
for each target memory. The meta-level process decides which
accumulator is allowed to progress at each time point. The optimal
policy (illustrated in Figure 7) can thus be characterized by when it
decides to switch between the two memories (and also when it
decides to terminate search, as before).

In general, the optimal policy attends to the memory that it
believes can be recalled soonest, as this will incur the least cost. In
our experiment, attending to a memory is operationalized by looking
at (or “fixating”) the associated cue. Thus, the basic prediction is that
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Figure 5
Opposing Effects of Memory Strength on Time to Recall Versus Skip a Target

Optimal Metamemory No Meta−Level Control Human

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
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Optimal Metamemory No Meta−Level Control Human
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Response Type
Skipped

Recalled

Note. (A) Reaction time as a function of metamemory judgment (feeling of knowing for skip trials, confidence for recall trials),
separately for trials in which participants correctly recalled the target versus skipped without responding (errors are excluded).
The left panel shows the predictions of the proposed optimal metamemory model, the center panel shows the predictions of a
model with the same recall process but no meta-level control (sampling stopping times randomly), and the right panel shows
human data. The models’ metamemory judgments are made based on the inferred memory strength at the end of the trial. (B)
Response time as a function of the accuracy rate for the presented cue in the pretest phase. Points show means of participant
medians, and error bars show 95% bootstrapped confidence intervals over participant medians. Each model is treated as one
participant (with 1 million simulated trials). All plotting decisions (including which effects to show, the aggregation method, and
axis limits) were preregistered. See the online article for the color version of this figure.

OPTIMAL CONTROL OF MEMORY RECALL 11



the cues for stronger memories will receive a greater share of the
total fixation time. More specifically, the model will be slower (and
less likely) to switch away from a strong memory but faster to switch
when the other memory is strong.
Inspecting model simulations, we also discovered a surprising

feature of the optimal policy. Its final fixations are longer than its
nonfinal fixations. This prediction is surprising because we see the
opposite pattern in decision-making tasks (e.g., Krajbich et al.,
2010, discussed further in the General Discussion section). Why
does the optimal policy make this prediction? We can understand
long final fixations as a sort of “rational commitment” behavior, in
which the model effectively commits to recalling one memory
before it is actually recalled. After committing to a memory, the
model continues to attend to it until it is either recalled or its inferred
strength drops well below the competitor. The latter occurs only
rarely. Thus, commitment tends to happen on final fixations, and
final fixations are therefore longer. To see why this is rational, note
that constant switching between the two memories is wasteful, as

it can take up to twice as long as if one had immediately committed
to one memory. On the other hand, immediately committing to the
first cue could lead to getting stuck on an out-of-reach memory.
Thus, the model only commits to a cue after becoming reasonably
confident that the cue is strong.

We now describe an experiment that tests these predictions.

Method

Participants

We recruited 685 participants through Prolific with the restriction
that they reported current U.S. or U.K. residence, had at least a 95%
approval rating, and had not participated in any related studies
(including pilots and Experiment 1). As preregistered, we excluded
184 (27%) participants who failed to correctly recall a target onmore
than 50% of critical trials. This yielded 501 participants in our final
analysis. The target sample size of 500 participants had over 95%
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Figure 6
Experiment 2: Critical Trials

recall

press F press D press J

Note. Participants were presented with two images on each trial and were instructed to recall the word associated with either of
them. Only one cue was visible at a time and participants could flip between them with the D and F keys. At any point, they could
press J or K to select an image for recall, at which point they had 5 s to enter the associated word.We refer to the periods of time in
which one cue was contiguously visible as “fixations.” See the online article for the color version of this figure.

Figure 7
Experiment 2: Optimal Policy and Predictions

stay

at
te

nd
ed

 p
ro

gr
es

s

time on attended memory

stay

switch st
op

slow switch from strong memory

unattended progress low unattended progress high

fast switch to promising alternative

Note. With two possible memories to recall, the optimal policy partitions the state space into three sections where it is
optimal to either: continue searching for the currently attended memory (blue), switch to the other memory (yellow), or
give up (pink). The optimal policy depends on the recall progress and time spent on both memories; here, we show two
slices of the full four-dimensional state space, setting the time spent on the unattended memory to 30 time steps and its
progress to either −0.3 (left) or 0.1 (right). The gray lines show example progress traces for a weak (dark gray) and
moderately strong (light gray) attendedmemory. The arrows highlight two key features of the optimal policy: It is slower to
switch when the currently attended memory is strong (vs. weak) but faster to switch if the unattended memory has already
shown promising recall progress (vs. if it has not). This plot was generated with parameters fit to the data in Experiment 1
(the same parameters used to generate the behavioral predictions). See the online article for the color version of this figure.
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power with α = .05 for all our preregistered hypotheses based on
a boot-strapping power analysis conducted on pilot data. This
experiment was approved by the institutional review board of
Princeton University (Protocol Number 10859).

Stimuli

The stimuli were identical to those used in Experiment 1.

Procedure

The procedure was identical to Experiment 1 with two exceptions.
First, we lengthened the training phase to include two blocks of
exposure (with each cue/target pair shown once) and one
intervening block of cued recall that was identical to the pretest
block except that each pair was shown only once. Second, the
critical trials followed an entirely different design described below.
Critical Trials. The critical trials employed a modified form of

cued recall in which two cues were presented on each trial. At the
beginning of each trial, two gray occluders were displayed.
Participants could temporarily remove the occluders, revealing the
cue image underneath, by pressing the J and K keys. However,
revealing one image would hide the other one. The 15-s timer
appeared and began counting down when the first image was
revealed. At any point, participants could press D or F to select one
of the two cues for recall. At this point, both images were hidden, a
yellow ring was drawn around the occluder for the selected image,
and a text box appeared where they could enter the word associated
with the selected image. Correct/incorrect feedback was provided
after each response. Unlike Experiment 1, there was no penalty for
errors (and hence, no skipping mechanism), no additional time
incentive (besides the small incentive for fast correct answers
that was also present in the pretest trials), and no collection
of metamemory judgments. Note that the lack of a skipping
mechanism means that we cannot distinguish between genuine
recall errors and the decision to give up on recall and enter a
random guess (i.e., performing the STOP action). For this reason,
we only analyze trials in which a target was correctly recalled. We
decided to omit the skipping mechanism despite this drawback
because we were specifically interested in the switching decisions
(not the stopping decisions), and we wished to minimize task
complexity.

Modeling

To generalize the model to the case with multiple memories that
could be recalled, we assume that each memory is associated with its
own independent object-level recall process. Furthermore, we
assume that progress can be made on only one memory at a time,
with the progress of the nonattended memory being held fixed.8 The
state is defined st = (tL, tR, zLt , zRt , f ), with tL and tR denoting the
number of time steps the “left” and “right” memory have each been
attended, zLt and zRt denoting their respective progress levels, and f ∈
{L, R} indicating which memory is currently attended. When the
progress for either memory hits the threshold, the corresponding
target is recalled.
At the meta-level, the agent now has three actions: STAY,

SWITCH, and STOP. STAY and SWITCH are both similar to
SWITCH, but the latter additionally flips the value of f. We assume

that there is some reconfiguration associated with switching. Thus,
the new reward function is:

rðst , atÞ =

8>>><
>>>:

UðrecallÞ if maxfzLt , zRt g ≥ θ
− γSEARCH if at = STAY
−ðγSEARCH + γSWITCHÞ if at = SWITCH
0 if at = STOP.

(11)

The new transition function has two parts. First, if the SWITCH
action is taken, f is flipped. Then the original one-memory
transition function is applied to the attended cue, updating the
corresponding t and zt variables. If the left memory is attended, we
have

Tðst+ 1jst , aÞ = pðzLt+1jtL, zLt Þ; (12)

and similarly, if the right cue is attended.
Computing the Optimal Policy. We again computed the

optimal policy by backward induction. We applied the same
discretization and computed the transition function in the same
way. Note that, because recall progresses for only one memory at a
time, it is not necessary to represent the transition function over
the full state space.

To compute the value functions, we began by initializing the
value of terminal states to U(recall) if either recall progress
exceeded the threshold and 0 if the combined time exceeded 150.
We then computed the value at previous time steps by iterating
backward. In this case, for each time step, we must consider all
combinations of time spent on each item that sum to the time step
under consideration. Additionally, we must consider three possible
actions. Assuming the left cue is currently attended, the action
values are

Q*ðs, SEARCHÞ =X
zLt+1

pðzLt+1jtL, zLt ÞV*ðtL + 1; tR, zLt+1, z
R
t , LÞ − γSEARCH

Q*ðs, SWITCHÞ =X
zRt+1

pðzRt+1jtR, zRt ÞV*ðtL, tR + 1; zLt , zRt+1,RÞ − γSEARCH − γSWITCH

,

(13)

with Q*(s, STOP) = 0 as before. Besides these differences, the
procedure is identical to the one-memory case.

Parameter Estimation. Due to the high dimensionality of the
data in this experiment (sequences of fixation durations), maximum
likelihood estimation is computationally prohibitive. Although
approximate fitting schemes are possible, given that we are not
interested in the quantitative fit of the model, we instead used this as
an opportunity to test the generalization capabilities of the model (cf.
Krajbich & Rangel, 2011). That is, we simply used the best-fitting
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8 This assumption is plausible given that the stimuli, images, are difficult
to hold in working memory. Nevertheless, it is possible that recall would
continue to progress for the unattended memory, albeit at a slower rate. We
did not consider this possibility for reasons of simplicity and computational
efficiency (allowing both memories to progress at once squares the MDP’s
branching factor, making backward induction far less efficient). Allowing for
this would encourage the policy to quickly check both cues to allow for such
parallel processing; however, the main qualitative predictions would likely
remain the same.
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parameters from Experiment 1. For the switch cost parameter, which
was not present in the Experiment 1 model, we arbitrarily set
γSWITCH = γSEARCH, noting that the predictions do not depend
greatly on the exact value of this parameter. However, because the
model must predict the duration of each fixation, the original NDT
model is no longer appropriate. Instead, we assumed that NDT was
added to each fixation independently. We fit the parameters of this
model by maximizing the likelihood of all nonfinal fixation
durations, assuming (for tractability) that they were independent
and identically distributed. We excluded final fixations from this
fitting procedure because they have different distributional properties
(discussed further in the Rational Commitment section below). The
fitted NDT parameters were μNDT = 615, αNDT = 2.75.
Lesioned Model Without Meta-Level Control. The lesioned

model is an extension of the lesioned model from Experiment 1,
with an additional mechanism to determine fixation durations. As
before, the stopping time was sampled from a Gamma distribution at
the beginning of each trial. Similarly, at the beginning of each
fixation, the switching time was sampled from a second Gamma
distribution. If this time was reached before the memory was
recalled or the stopping time was reached, then the model switched
to attending the other cue and sampled a new switching time.
To give the lesioned model the best chance of capturing the

qualitative effects, we fit all of its parameters to the behavioral
data (in contrast to the optimal model, which uses parameters fit
to Experiment 1). Computing an exact likelihood is intractable
in this case; thus, we approximated the likelihood by assuming
that the duration of each fixation depends only on the pretest
accuracy of the fixated and nonfixated cues, and whether or not
the fixation is final. Given this assumption, we estimated the
likelihood in the same way as for Experiment 1, with the
exceptions that the histogram had size 3 × 3 × 2 × 151 (three
accuracy rates for each cue, final vs. nonfinal, and 151 response
time bins) and that the likelihood was computed per fixation rather
than per trial. Note that we constructed the histogram using only
correct simulated trials, as we exclude error trials from the human
data. The MLE was(μ0 = 0.083, σ0 = 0.103, σx = 0.148, μstop =
4,527, αstop = 76.16, μswitch = 4,943, αswitch = 0.18, μNDT = 814,
αNDT = 3.56.

Statistical Analyses

As in Experiment 1, all reported regressions are linear mixed-
effects models with nonstandardized regression coefficients (see the
Method section of Experiment 1 for details). As mentioned above,
we excluded 184 (27%) participants who failed to correctly recall
a target on more than 50% of critical trials. This yielded 501
participants in our final analysis. We also exclude all trials with
incorrect responses: 497 (5%) intrusions and 552 (6%) unclassified
errors, as well as 309 (3%) time-out trials. This leaves only the
correct trials (as there was no option to skip a trial). As before, we
marked a response as correct if a spellchecker suggested the correct
word as a possible intent of the given response.

Transparency and Openness

All sample sizes, exclusion criteria, statistical analyses, modeling
procedures, and plotting decisions were preregistered (https://aspre
dicted.org/xq9nx.pdf). As in Experiment 1, we used a more flexible

lesioned model than we originally intended. Due to this change, we
elected to fit the parameters of the lesioned model to data rather than
using parameters from Experiment 1 as preregistered. Furthermore,
we introduced a new plot and accompanying regression to better
distinguish between the models regarding the “rational commit-
ment” prediction. See Appendix B for details. As in Experiment 1,
we previously ran a preregistered version of this experiment; in this
case, we reran the experiment because we discovered a conceptual
flaw in the original analysis plan. See Appendix C for details,
including full results with the previous data set.

Results

Attention Is Drawn to Stronger Cues

The critical model predictions concern participants’ “fixation”
behavior in the double cued-recall trials, that is, the sequence of key
presses they made to alternately display the two images. The most
basic prediction of the optimal model is that participants should
attend more to the cue assocaited with a stronger memory.
Intuitively, the target for the stronger cue can be recalled faster, and
so time spent looking at this cue is more productive. Indeed, as
illustrated in Figure 8A, participants spent substantially more time
looking at cues that were stronger than the other available cue (B =
0.187, 95%CI [0.178, 0.196], t(326.9)= 41.46, p< .001). However,
this pattern is also shown (to a lesser extent) by a lesioned model that
randomly switches between the cues. This is due to two properties of
the object-level recall process. First, the last fixation is always on the
cue whose target is recalled. Second, stronger cues are more likely to
be recalled. Together, this implies that stronger cues are more likely
to be fixated last and thus receive more fixations (and more fixation
time) on average.

Inspecting the time course of attention across the trial
(Figure 8B) reveals a more nuanced picture. People tend to
quickly check both cues (as indicated by the initial dip in the
probability of fixating on the first cue). Then, if the second cue is
stronger (red lines), they continue fixating it. But if the first cue is
stronger (blue lines), they switch back to it. From about 1–3 s,
participants show an increasingly strong tendency to fixate on the
stronger cue, and this tendency remains stable for the remainder of
the trial. The optimal model shows a similar pattern, although its
tendency to fixate the stronger cue emerges faster (as indicated by
the earlier divergence of fixation probability for different relative
strengths). In the lesioned model, a slight tendency to fixate the
stronger cue emerges in the first second and it remains small for the
remainder of the trial. This is due to the last fixation confound
discussed above.

Nonfinal Fixation Durations

Although the lesionedmodel was not able to capture the strength or
time course of the tendency to fixate stronger cues, the fact that it can
produce the effect at all casts some doubt on the interpretation of the
pattern in human data. Thus, for our next analysis, we inspected the
duration of individual nonfinal fixations, which are clearly not subject
to the last fixation confound. As illustrated in Figure 7, the optimal
policy’s decision to terminate a fixation by switching to the other cue
depends on the recall progress of both targets; it is slower to switch
when the currently attended cue is generating rapid progress but faster
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to switch when the unattended cue has already generated substantial
progress. The model thus predicts that nonfinal fixation durations will
increase9 with the pretest accuracy of the fixated cue but decrease
with the pretest accuracy of the nonfixated cue. As illustrated in
Figure 9, both of these predictions were confirmed: Participants’
nonfinal fixations increased with the pretest accuracy of the fixated
cue (B = 0.101, 95% CI [0.069, 0.133], t(219.9) = 6.22, p < .001),
and decreased with the pretest accuracy of the nonfixated cue (B =
−0.432, 95% CI [−0.564, −0.300], t(71.4) = −6.41, p < .001; first
fixations excluded). The lesioned model predicts no such effect. In
fact, it is incapable of predicting either effect under any parameter
setting that achieves accuracy levels comparable to our participants
(with very low accuracy, it can capture the effect through a selection
mechanism; see Appendix D).10

Rational Commitment

For our final analysis, we tested the model’s “rational
commitment” behavior, in which the model effectively commits
to recalling one memory before it is actually recalled. One
observable consequence of this is that the model’s final fixations are
longer than their nonfinal fixations, as the commitment decision can
occur when the memory is still well below the threshold. Consistent
with this, Figure 10A shows that our participants’ final fixations
were indeed longer than their nonfinal fixations (B = 0.869, 95% CI
[0.810, 0.929], t(429.4) = 28.86, p < .001). However, this figure
also shows that the lesioned model can capture this effect as well.
It is able to do this through a “random commitment” mechanism:
by assuming a high-variance switching-time distribution, it

occasionally samples a very long fixation duration, which is likely
to end in recall.

Did participants’ long final fixations reflect rational commitment
or random commitment? The key distinction between these types of
commitment is that it is only rational to commit to a memory that is
at least as strong as the alternative. Therefore, only with a random
commitment strategy will one allocate long fixations to cues that are
weaker than the alternative. Figure 10B thus shows the frequency
with which the weaker memory is fixated, separately for fixations
of different lengths. Importantly, we do not limit this analysis to
final fixations as this would exclude the cases where the lesioned
model sampled a long fixation duration on a low-strength cue, thus
selecting for the cases where the lesioned model was “accidentally”
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Figure 8
Attention Is Drawn to Stronger Cues

Optimal Metamemory No Meta−Level Control Human
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Note. (A) The proportion of total viewing time allocated to the first-seen cue image as a function of the difference in pretest
accuracy of the first- and second-seen cues. Trials for which the second cue was never shown are excluded. Note that the 95%
confidence intervals are too small to be distinguishable. (B) The probability that the first-seen cue is currently displayed over the
course of the trial, split by relative pretest accuracy. See Figure A2 for a version of this figure split by total pretest accuracy. See
the online article for the color version of this figure.

9 To be exact, the model predicts a nonmonotonic effect such that fixations
are longest for intermediate strength cues. This is due to the same selection
effect that produces a nonmonotonic prediction in Figure 5B. Switching
away from a strong cue suggests that the model incorrectly estimated its
strength (because progress happened to be slow at first). This becomes
increasingly unlikely as the fixation progresses and more evidence is
collected. Such “erroneous” switches are thus more likely to occur quickly.

10 Again, the lesioned model predicts a reverse effect due to selection
effects similar to those discussed in Experiment 1 and the previous footnote.
For the fixated cue’s strength, it is exactly the same logic as in Experiment 1.
A strong cue is likely to be recalled quickly; it will only be switched away
from when a short switching time is sampled. For the nonfixated cue’s
strength, the logic is more complex. Because we condition one of the
memories being recalled, the nonfixated cue being weak implies that the
fixated cue is strong. Following the same logic as before, this in turn implies
that a short switching time was sampled (as otherwise the cue would have
been recalled).
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rational. In both the optimal model and the human data, we see
that long fixations are unlikely to be directed to weaker memories.
In particular, the probability of fixating the weaker memory
significantly decreased with fixation duration (B = −1.376, 95%
CI [−1.537, −1.215], z = −16.78, p < .001; logistic regression,
excluding trials where the cues had equal pretest accuracy). In
contrast, under the lesioned model, the weaker cues are actually
more likely to receive long fixations (because strong cues are likely
to be recalled quickly, cutting off long fixations). The fact that
people show a strong tendency not to direct long fixations to weak
cues despite this selection effect suggests that their commitment
decisions were indeed rational.
Note that we did not preregister this final analysis because our

initial, less flexible, implementation of the lesioned model that

sampled switching times from the empirical distribution could not
capture the long final fixation effect (see Appendix B, Figure D5A).
However, the effect also holds in a previously collected data
set, which we did not use when developing Figure 10B or the
accompanying statistical test. This provides a quasiconfirmatory
test of the exploratory analysis in the previous paragraph. See
Appendix C for details.

Discussion

In this experiment, we found evidence of a richer form of meta-
level control of memory. Specifically, when presented with two cues
associated with different target memories, our participants directed
their attention toward the cue associated with the stronger memory.
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Figure 9
Nonfinal Fixation Durations
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Note. (A) The duration of nonfinal fixations is a function of the pretest accuracy of the currently fixated cue. (B) The same, but
for the pretest accuracy of the cue that is not currently fixated (first fixations excluded). See the online article for the color version
of this figure.

Figure 10
Rational Commitment to Stronger Cues
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Note. (A) The distribution of final and nonfinal fixation durations. (B) The proportion of fixations on items with lower pretest
accuracy than the alternative, separately for fixations of different durations (first fixations excluded). The error bars indicate 95%
confidence intervals computed over the total proportion (including−0.5 and−1) for each participant. See the online article for the
color version of this figure.
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This was reflected in the overall proportion of fixation time, the time
course of fixations, and the duration of individual nonfinal fixations.
The latter two results are especially important because they are
behavioral signatures of metacognitive control during the retrieval
process itself (before a recall is completed or abandoned). To our
knowledge, this is the first empirical demonstration of a dynamic
metamemory process unfolding over time.

General Discussion

In this article, we presented an optimalmodel of meta-level control
for cued recall. The model consists of a metacognitive process that
monitors the progress of a basic recall process and optimally controls
how long the process is allowed to continue (either terminating recall
or switching to recall of a different memory). In two experiments, we
showed that human behavior is qualitatively consistent with the
predictions of this model. In Experiment 1, we replicated and
extended the findings of Costermans et al. (1992), showing that
people were faster to recall targets with higher strength (as indicated
by both subjective judgments and objective performance) but slower
to give up on targets with higher strength. In Experiment 2, we
showed that people also attend to stronger memories when they can
choose between two possible targets. Together, our results suggest
that people can estimate the strength of a memory that they are trying
to recall and use this information to adaptively control their retrieval
efforts.

An Explicit Instantiation of a Classic Theory

Our results contribute to the metamemory literature by providing
(to our knowledge) the first computationally explicit instantiation of
the classic theory of metamemory proposed by T. O. Nelson and
Narens (1990) in the context of memory recall. According to this
theory, metacognition involves the interaction between a meta-level
process and an object-level process, where the meta-level process
monitors the state of the object-level process and controls it
accordingly. In the context of memory recall, they proposed a verbal
model in which a feeling of knowing is generated by “an evaluation
in terms of whether there has been sufficient progress to continue,”
with the process terminating in an omission error when this feeling
of knowing no longer “exceeds the FOK threshold for claiming to
know the answer” (p. 137).
Here, we have formalized this classic model as a sequential

decision problem in which the meta-level process executes a
sequence of actions (continuing or terminating memory search) to
maximize reward (utility of recall minus cost of search) given the
observed state of the object-level process (recall progress). By
formalizing this problem as an MDP, we could identify the optimal
metacognitive control policy using standard dynamic programming
techniques. This allowed us to generate quantitative predictions
about the observable behavior we would expect to see if people were
indeed using a rational metamemory system to control how long
they search for an elusive memory. By confirming these predictions
in an experiment, we have contributed quantitative support for this
classic theory, which was previously supported only by intuitive
qualitative predictions.
Formalizing Nelson and Naren’s model as an MDP also allows us

to create a conceptual link between metacognition and RL (Sutton &
Barto, 2018). Specifically, we map the meta-level and object-level

processes onto the concepts of agent and environment, respectively.
That is, we model metacognition as a meta-level agent interacting
with an object-level environment in much the sameway as one would
model, for example, a mouse (the agent) searching for food in a maze
(the environment). RL has become a major theoretical foundation in
the psychology and neuroscience of decision making (Dayan &Daw,
2008; Glimcher, 2011; Niv, 2009). However, for the most part, it has
been used to model the interaction between agents and external
environments. Applying RL to model the metacognitive interaction
between an agent and its internal environment (cf. Simon, 1955)
creates the opportunity to transfer much of what we know about how
people learn to act effectively in the world to understand how people
learn to think effectively in their own minds (Lieder et al., 2018).

Rational Analysis for Metamemory

Outside of metamemory, the intellectual roots of our model lie in
Anderson’s (1990) rational analysis, with early work demonstrating
that the forgetting behavior commonly observed in lab settings is not
a weakness or peculiarity of the memory system, but instead a
reflection of rational adaptation to the statistics of the environment
(Anderson & Milson, 1989). The key idea underlying both this
model and ours is that memory (and cognition more generally) can
be treated as an optimization problem. More recently, researchers
have emphasized that this optimization problem must also account
for the constraints imposed by our limited computational resources
(Gershman et al., 2015; Griffiths et al., 2015; Howes et al., 2009;
Lewis et al., 2014). This approach, sometimes called resource-
rational analysis, has generated insight into a wide variety of
cognitive processes (see Lieder & Griffiths, 2020, for a review).

Focusing on memory, a large body of work has shown that many
apparent memory biases actually reflect optimal statistical reasoning
under the constraint of noise or capacity limitations (Gershman,
2021). For example, in reconstruction tasks, people draw on prior
knowledge of a stimulus category to adjust for memory imprecision
(Huttenlocher et al., 2000), using more abstract categories for less
familiar stimuli (Hemmer & Steyvers, 2009). In working memory
tasks, people are sensitive to cost–benefit trade-offs when choosing
how many items to encode (Howes et al., 2016), how to allocate
encoding resources across items (Yoo et al., 2018), and how much
total resource to allocate (van den Berg & Ma, 2018). Researchers
have also begun to explore the implications of the constraints that
emerge from more detailed models of memory. For example, Zhang
et al. (2022) characterized the optimal order in which to recall items
from a list, assuming that items are stored and recalled with the
context maintenance and retrieval model (Polyn et al., 2009,
discussed further below). They find that the optimal policy is to start
from the beginning of the list and then sequentially recall forwards,
providing a rational account of the often-observed primacy and
forward asymmetry effects (Zhang et al., 2022).

Focusing on metamemory in particular, two recent models of
judgments of learning are based on signal detection theory (Y. Jang et
al., 2012) and Bayesian inference (Hu et al., 2021), both of which
have rational bases in probability theory. However, these models only
attempt to explain how metamemory judgments are produced, not
how they are used—a critical component in a complete rational
analysis. In one of the earliest computational models of metamemory,
Metcalfe (1993) proposed that feeling-of-knowing judgments are
used to adaptively control the weight with which new memories are
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