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THEORETICAL NOTE

When Working Memory May Be Just Working, Not Memory

Andre Beukers1, Maia Hamin2, Kenneth A. Norman1, 3, and Jonathan D. Cohen1, 3
1 Department of Psychology, Princeton University

2 Department of Computer Science, Princeton University
3 Princeton Neuroscience Institute, Princeton University

The N-back task is often considered to be a canonical example of a task that relies on working memory
(WM), requiring both maintenance of representations of previously presented stimuli and also processing of
these representations. In particular, the set-size effect in this task (e.g., poorer performance on three-back
than two-back judgments), as in others, is often interpreted as indicating that the task relies on retention and
processing of information in a limited-capacity WM system. Here, we consider an alternative possibility:
that retention in episodic memory (EM) rather than WM can account for both set-size and lure effects in the
N-back task. Accordingly, performance in the N-back task may reflect engagement of the processing
(“working”) function of WM but not necessarily limits in either that processing ability nor in retention
(“memory”). To demonstrate this point, we constructed a neural network model that was augmented with an
EM component, but lacked any capacity to retain information across trials in WM, and trained it to perform
the N-back task. We show that this model can account for the set-size and lure effects obtained in an N-back
study by M. J. Kane et al. (2007), and that it does so as a result of the well-understood effects of temporal
distinctiveness on EM retrieval, and the processing of this information in WM. These findings help
illuminate the ways in which WM may interact with EM in the service of cognitive function and add to a
growing body of evidence that tasks commonly assumed to rely on WMmay alternatively (or additionally)
rely on EM.

Keywords: working memory, episodic memory, temporal context model, neural network models, n-back
task

Immediate memory—that is, the ability to rapidly store and
retrieve information after a short interval—is generally assumed to
be served by two broadly distinguishable memory systems: working
memory (WM) and episodic memory (EM).1 WM is assumed to
transiently maintain information in a capacity-limited fashion
(Cowan, 2017; Oberauer et al., 2018). In contrast, EM stores
information more durably, with few (if any) restrictions on capacity,
in a latent form that can be retrieved later for use. While EM is
usually not assumed to be subject to a storage capacity limitation

(Polyn et al., 2009; Tulving& Thomson, 1973), retrieval from EM is
subject to interference from previously studied items, referred to as
proactive interference (PI). Crucially, prior work has shown that PI
during retrieval can account for forgetting in tasks with short
retention intervals (e.g., Brown et al., 2007; Farrell, 2012; Oberauer
et al., 2012; Unsworth et al., 2011). Here, we explore this idea in the
context of the N-back task, by implementing a model of the task in
which the retention of information across trials relies on EM rather
than WM, and processing in WM uses a neural network to compare
the information retrieved from EM with the information currently
represented in the network. We use this model to demonstrate that
effects in the N-back task often assumed to reflect processing and
maintenance constraints associated with WM function—such as the
set-size and lure effects—can also be produced by PI associated with
the use of EM for retention. The model provides a mechanistic
grounding for recent cognitive neuroscience work addressing
contributions of EM to tasks that have traditionally been construed
as relying on active maintenance in WM (e.g., Beukers et al., 2021;
Foster et al., 2019; Hoskin et al., 2019) and also provides a point
of contact with neural network models addressing the role of EM
in higher cognitive function, both within cognitive science
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an important factor that we discuss below.

Psychological Review

© 2023 American Psychological Association
ISSN: 0033-295X https://doi.org/10.1037/rev0000448

1

https://orcid.org/0000-0002-5887-9682
https://orcid.org/0000-0003-2316-0763
https://github.com/andrebeu/nback-paper
https://github.com/andrebeu/nback-paper
mailto:knorman@princeton.edu
mailto:jdc@princeton.edu
https://doi.org/10.1037/rev0000448


(Webb et al., 2021) and machine learning (Graves et al., 2014; Ritter
et al., 2018; Wayne et al., 2018).

WM, Retroactive Interference, and Set-Size Effects

WM is universally assumed to have a limited storage capacity
(Oberauer et al., 2018; Sternberg, 1966), that is considered to be
relatively strict (in the single digits; Cowan, 2017; Miller, 1956).
This is often (but not always) attributed to the reliance on active
maintenance as the mechanism of storage in WM, in which traces
fail to be maintained because either they degrade with time, and/or
are displaced by new ones.2 The latter effect is often referred to as
retroactive interference (A. Baddeley, 1992; Barnes & Underwood,
1959; Peterson & Peterson, 1959). In either case, as traces decay
and/or newly activated ones interfere and displace them, older
information is lost. Perhaps the empirical phenomenon that best
exemplifies this is the set-size effect. The set-size effect, observed
across a wide range of short-term memory and WM tasks (such as
the classic Sternberg paradigm, Sternberg, 1966, and the N-back
task Kirchner, 1958), refers to the observation that performance
degrades as more items are required to be remembered—that is, the
larger the size of the memory set, the more likely it is that
information will be lost. One possible explanation of the set-size
effect is that it arises from serial encoding into a limited-capacity
WM system, whereby items in the set that were encoded earlier are
subject to interference from those encoded later and/or decay due to
the passage of time. However, the idea that set-size effects are a
necessary sequela of WM engagement does not license the reverse
inference, that the observation of set-size effects is a reliable
indicator of WM engagement. As others have noted (e.g., Brown et
al., 2007; Farrell, 2012; Oberauer et al., 2012; Unsworth et al.,
2011), and we discuss below, there is a growing recognition that
such effects can arise from the use of EM for storage and retrieval of
recently presented information.
It is also worth noting that, in some tasks, set-size effects have

also been attributed to demands on the processing capacity of WM
which, in addition to its storage capacity, is also considered to be
limited (A. D. Baddeley & Hitch, 1974). The N-back is a salient
example of this (e.g., Rac-Lubashevsky & Kessler, 2016), as it has
often been assumed to require the updating of the ordinal status of
items in WM as each new stimulus is presented (i.e., what was the
one-back stimulus must now be assigned as the two-back stimulus,
and the two-back assigned as the three-back, etc.)—a processing
requirement that would obviously increase with set-size. However,
as discussed below, the use of EM can avert these processing
demands, while still leading to substantial set-size effects.

EM, PI, and Temporal Context Effects

In contrast to the limited storage capacity ofWM, EM is generally
assumed to rely on a different mechanism of storage, in which traces
are more durable (e.g., from hours to years) and are not subject to a
restrictive capacity limit. However, such durable and (effectively)
unrestricted storage carries with it its own limitations. Unlike WM,
neither new traces nor time act to displace or degrade older
memories in EM. However, as EM traces accumulate over time, the
likelihood increases that a particular memory will be similar in some
way to others. Because retrieval from EM is assumed to be content-
based (Marr, 1971; Tulving & Thomson, 1973)—that is, items are

retrieved by presenting a cue and identifying items that are most
similar to it—the challenge of identifying and retrieving a particular
item increases as progressively more memories are stored. One of
the well-known consequences of this problem of discriminability in
EM is PI (Brown et al., 2007): the potential for older traces in EM to
be confused with newer ones that are similar, and thus interfere with
reliable retrieval of the latter. Thus, although the duration and
capacity of storage in EM may be unlimited, its practical use is
constrained by PI at retrieval.

One important elaboration of theories concerning EM is the
incorporation of temporal context information into stored traces, that
can be used for later retrieval (Howard & Kahana, 2002; Lohnas
et al., 2015; Polyn et al., 2009). This has been used to explain not
only how people can retrieve information from particular times in
the past, but also—coupled with PI—the kinds of confusion errors
they make when doing so. For example, it has been used widely to
explain serial position and contiguity effects in free recall tasks
(Kahana, 1996, 2020) and serial recall tasks (Brown et al., 2007),
many of which share similarities with tasks used to probe WM. The
effects of PI associated with temporal contiguity are especially
relevant in tasks that require discrimination of items presented in
close temporal proximity to one another—precisely the conditions
of most WM tasks, and the N-back task in particular.

Thus, despite their different properties, both WM and EM suffer
from forms of interference that can constrain memory performance.
Whether it is the number of items that can be retained and/or
processed in WM, or the number of items that can be reliably
retrieved from EM, both systems exhibit a functional limitation that
can manifest as set-size effects—a commonality that may confound
the interpretation of such effects in behavioral data as evidence for
the engagement of one memory system or the other.

Here, we use the N-back task to explore these possibilities, both
because it is has come to be one of the most widely used probes of
WM engagement (e.g., Callicott et al., 1999; Cohen et al., 1994;
Dobbs &Rule, 1989; Gevins &Cutillo, 1993; Jaeggi et al., 2010;M.
Kane & Conway, 2023; M. J. Kane et al., 2007; Kirchner, 1958;
Nikolin et al., 2021; Oberauer, 2005; Oberauer et al., 2018; Owen
et al., 2005; Rac-Lubashevsky & Kessler, 2016; Ross, 1966), and
because it is generally assumed to tax both the storage and processing
capabilities of WM, as reflected in the profile of performance
observed in the task. Specifically, we explore an account of
performance in this task that has not been widely considered, in
which: the storage and retrieval of previously presented information
relies exclusively on EM; WM is used only to represent and process
themost recently presented stimulus andmemory retrieved from EM;
and processing in WM involves simply comparing and making a
decision based on that information (i.e., without the need to
repeatedly update which item occurred in which previous position).
To the extent that this account can explain the profile of performance
in theN-back, including both set-size and lure effects, then it suggests
that these need not reflect constraints on storage and/or processing in
WM, but rather the effects of PI that can arise when stimuli with
similar temporal encodings are retrieved in place of the correct
ones—an effect that is consistent with temporal context models
(TCMs) of EM and the large literature of empirical effects that are
explained by these theories (Brown et al., 2007; Kahana, 2020).
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2 See, for example, Oberauer et al. (2012) and Oberauer (2019) for
accounts of WM that challenge this focus on active maintenance.
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We test the ability of this account to capture previously reported
empirical effects in the N-back task, by implementing it in the form
of a neural network model that is responsible for the representation
and processing of information in WM; importantly, the model lacks
any mechanism for the retention of previously presented stimuli in
WM, but it is augmented with a simple form of EM that is used to
encode, store, and retrieve previously presented stimuli. The latter
corresponds closely to a form of “external memory” (i.e., a
dictionary of previous events), that is gaining increasing use as a
model of EM in cognitive science and neuroscience (e.g., Lu et al.,
2022; Webb et al., 2021) as well as machine learning (e.g., Graves
et al., 2014; Pritzel et al., 2017; Ritter et al., 2018; Wayne et al.,
2018). We show that, even when there is no reliance on WM for
storage, and the demands on processing are limited (i.e., simply
making a decision based on a comparison of two sources of
information), the model nevertheless exhibits empirically observed
set-size and lure effects (described below), which emerge as a
consequence of PI between traces in EM that incorporate similar
temporal context representations.
The model consists of a feedforward neural network, coupled

with a simplified implementation of a mechanism for context-based
EM. The feedforward network implements the ability to compute on
actively represented information (i.e., the “working” function of
WM), but lacks any ability to retain that information after the relevant
computations have been carried out and new information is presented
to the network (i.e., it lacks the “memory” capabilities usually
ascribed to WM). Rather, in the model, storage of information from
one trial to the next—about the stimulus as well as temporal
information that can be used to determine its serial position, both of
which are required to perform the N-back task—relies on an EM
module that encodes each stimulus and the temporal context in which
it occurred. We first confirm that the encoding of temporal context
information in EM traces causesmemories encoded in close temporal
proximity to interfere with one another, in a manner that can explain
set-size effects observed in WM tasks. This initial result reaffirms
prior work that has demonstrated the effects of temporal distinc-
tiveness on memory retrieval (Brown et al., 2007), here using a
formally simple mechanism for temporal encoding that is consistent
in its properties with previous implementations (Manning et al.,
2014). We show that this mechanism, coupled with a neural network
mechanism trained to evaluate the temporal “distance” between
stimuli, can reproduce empirically observed patterns of performance
in the N-back task (Braver et al., 1997; M. J. Kane et al., 2007).
More specifically, in the N-back task (M. Kane & Conway, 2023;

Kirchner, 1958), participants see a sequence of items presented one
at a time and must indicate, for each item, whether that item matches
the item that occurred n items ago in the sequence. This task requires
the ability to retain previously seen stimuli as well as information
about their serial position and to use that information to match the
current stimulus with the relevant one retained in memory. We show
that temporal context representations that change gradually with
each stimulus presentation, and that are stored and can be retrieved
from EM, can be used to estimate the serial position of an earlier
stimulus and thereby perform the task; however, this also makes the
process subject to PI, leading to set-size and lure effects.
In the sections that follow, we first provide an overview of the

model, describing components that are relevant to all simulations.
We then describe in detail how EM was implemented in the model,
and discuss how similar temporal context representations can lead

to PI (following Brown et al., 2007). Next, we describe our
implementation of the processing function of WM as a feedforward
neural network, that is used to compare current information with the
previous information stored in EM. Finally, we use the full model to
simulate performance in theN-back task, showing how—despite the
absence of a mechanism for retention of prior stimuli in WM and
limited demands on WM for processing, the model is able to
perform the task and, in doing so, exhibits set-size effects as well as
other features of human performance in the task that can be
attributed to PI as a result of the use of EM for storage and retrieval.

Method

Model Overview

The model consists of two components, an EM component and a
WM component. The EM component is characterized by two
operations: encoding and retrieval. Encoding involves storing the
conjunction of features that correspond to a given stimulus. Following
TCM implementations of EM (Estes, 1955; Kahana, 2020), an EM
trace includes stimulus features as well as the temporal context in
which the stimulus occurred. Importantly, traces stored in EM are
enduring (i.e., they last the entire extent of a simulation) and latent
(i.e., do not influence WM processing unless retrieved). Retrieval of
these latent EM traces is carried out by a similarity-based sampling
operation (Gillund & Shiffrin, 1984; Graves et al., 2014; Norman &
O’Reilly, 2003; Shiffrin & Steyvers, 1997; Wayne et al., 2018; Webb
et al., 2021). The stimulus is presented on each trial as perceptual input
and an associated temporal context (i.e., the current one), which are
used together as a retrieval cue that is compared to all traces stored in
EM; the higher the similarity between the retrieval cue and a trace
stored in EM, the higher the probability of that trace being retrieved.3

The WM component is implemented as a strictly feedforward
neural network (i.e., without any recurrence), which implements the
constraint that, in this model, WM can only represent and process
information that is immediately presented to it, from the environment
and/or fromEM; that is, it is restricted to the “working” component of
WM. Specifically, its role is to compare the current perceptual and
temporal context information with memories retrieved from EM, and
select a response based on whether the stimulus information matches,
while the temporal context information differs by n.

Below, we show how—even though this model does not rely on
WM for the retention of information across trials, and the processing
demands on WM are limited (i.e., to a comparison operation but not
any updating operations), while it has no constraints on the storage
capacity of EM—errors can nevertheless arise due to PI that is the
result of similarity in the temporal codes among traces in EM. In the
following sections, we describe the implementation of each of these
two model components in greater detail. We start, in Section EM
Component, by describing the implementation of the EM component
of the model. This includes a mechanism for generating temporal
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3 Similarity-based retrieval can be thought of as a computational
approximation to the neurobiological mechanism of retrieval from EM
(e.g., hippocampal pattern completion; Marr, 1971; McClelland et al., 1995).
Similarity-based retrieval is also playing an increasingly important role in
machine learning models that address human-level cognitive function, both
in the attention mechanisms of transformers (Altabaa et al., 2023; Vaswani
et al., 2017), and as an augmentation to neural network models with a form of
external memory (e.g., Graves et al., 2014; Pritzel et al., 2017; Ritter et al.,
2018; Wayne et al., 2018; Webb et al., 2021).
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context information, together with an analysis that directly examines
its effects on serial position information encoded by context
representations. Then, in Section WM Component, we describe the
feedforward neural network architecture that is used to implement
WM and makes use of information stored in EM to perform the
N-back task.

EM Component

EM Encoding

For every stimulus presented to the model at test, a corresponding
representation was formed and stored as an EM trace. Each EM trace
was a concatenation of a one-hot stimulus vector and a continuous-
valued context vector (described in Section Formulation of Context
Representations). Because we assume EM has no practical capacity
limitation, a new trace was appended to EM storage for each stimulus
that was presented over the course of a simulation. Thus, for every
trial, EMcontained a list of all items previously presented to themodel
during that simulation. Memories were encoded in EM immediately
after being processed by the neural network as the sensory input for
the current trial. This was to prevent retrieval of the current stimulus
from EM on the same trial in which it was also the sensory input.

Formulation of Context Representations

Implementation of EM in the model followed the approach taken
in previous applications of TCM (Estes, 1955; Howard & Kahana,
2002; Lohnas et al., 2015; Mensink & Raaijmakers, 1988; Polyn et
al., 2009), using context representations that were implemented in a
neurally plausible form that not only changed noisily and gradually
over time, but were also bounded in magnitude. To meet these
criteria, we modeled context representations as an n-dimensional
vector of scalar values between 0 and 1 that evolved gradually
according to a random walk on an n-dimensional hypersphere. This
context drift process was defined by the following equation:

Ct = FðΦ1
t ,Φ2

t , : : :Φn−1
t Þ = FðΦ1

t−1 + Nðμ, σÞ,Φ2
t−1

+ Nðμ, σÞ, : : :Φn−1
t−1 + Nðμ, σÞÞ: (1)

At each timepoint, n − 1 polar coordinates Φt−1 were updated by
summing a Gaussian term N (μ, σ).4 That is, the context equation
was defined as a Gaussian drift process on hypersphere of
dimension n. We set the dimension of the hypersphere (n = 25)
to be sufficiently large so as to minimize the likelihood that the
vector would repeat (i.e., cycle among the same set of values). We
set μ = 0.25 and σ = 0.075 to best fit the behavioral data. Next, in
Section Analysis of Context Representation, we provide an analysis
of the evolution of this temporal context representation, showing
how this can give rise to PI in EM, and consequently lead to set-size
effects in tasks that involve sequential presentation of stimuli over
trials.

Analysis of Context Representation

In this section, we present analyses showing that the contextual
drift (Estes, 1955; Howard & Kahana, 2002; Lohnas et al., 2015;
Mensink & Raaijmakers, 1988; Polyn et al., 2009) and temporal
distinctiveness (Bjork & Whitten, 1974; Brown et al., 2007;

Glenberg et al., 1980) properties of our model can produce set-size
effects. Then, in Section Results, we integrate this mechanism with
the feedforward neural network described below and show that
together these mechanisms can explain detailed patterns of
behavioral performance, including set-size effects, observed for
human performance in the N-back task.

Our account starts with the idea, taken from context-based models
of memory, that items are tagged with a contextual representation
that drifts noisily over time (Brown et al., 2007; Estes, 1955; Howard
&Kahana, 2002; Lohnas et al., 2015;Mensink&Raaijmakers, 1988;
Polyn et al., 2009), as described above. Contextual drift provides a
basis for making temporal discriminations based on context
representations. For example, consider the task of discerning the
relative serial positions of two previously presented items (e.g.,
which itemwas presented two items vs. three items ago). If the goal is
to select the more recent of the two items, one approach would be to
compare the context tags associated with those items to the current
context and choose the item with the smaller contextual distance to
the current context—the principle of contextual drift implies that on
average the contextual distance should be smaller for more recent
items (Hintzman, 2002). However, because of accumulated noise in
the contextual drift process, the variance associated with this
contextual distance measure also increases as a function of the
temporal distance. As a consequence of this increase in variance, the
distributions of contextual distance scores associated with nearby
serial positions will overlap more as a function of elapsed time
relative to some reference (e.g., the present). Concretely, if we fix the
time elapsed between studying the two items, the relative serial
positions of which are being judged, but vary the temporal distance
between these two items and the memory test (e.g., if the two items
were studied in adjacent list positions, and we vary whether the two
items were studied 1 min ago vs. 20 min ago), it will be more difficult
to distinguish the relative serial positions of the items as they recede
into the past due to increased variance in contextual distance. This
effect reflects a form of parallax, that has been described in the
literature by analogy to telephone poles receding into the distance:
The further the telephone poles are in the distance, the harder it is to
tell apart adjacent poles (Crowder, 1976).

Previously, Brown et al. (2007) argued that the diminution of
temporal distinctiveness among items as function of their distance
from a reference can lead to a corresponding degradation in the
ability to recall more distant items because of increased competition
(i.e., if the items are less distinguishable, it is more difficult to select
out a specific item). Here, we hypothesized that this reduction in
temporal distinctiveness for less recent items can provide a basis for
the set-size effect in the N-back task. This effect manifests as an
increase in errors and/or response times with greater n’s (Oberauer
et al., 2018); for example, performance is worse on the three-back
version of the task than the two-back version. As noted earlier, the
set-size effect in the N-back task is often assumed to reflect a
limitation in the maintenance and/or processing capabilities of WM,
with three items subject to greater degradation or processing
demands than two items. Here, we propose that this effect can also
be produced by the increase in confusability between different
context representations with increasing temporal distance, without
any contribution was constraints on WM. For example, the three-
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4 Note that to specify a hypersphere in n, only n − 1 coordinates are
needed.
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back task involves discriminating three-back targets from items two-
back that are potential lures; and, similarly, the two-back task
involves discriminating two-back targets from one-back lures. By
the logic outlined above, the former (three-back) task will be more
difficult because the target and lures, even if they are adjacent,
occurred further back in time, so the associated contextual distances
will be more variable and thus harder to discriminate (by analogy, it
is harder to determine exactly which “telephone pole” is the one
three-back); this effect is illustrated in Figure 1.

WM Component

Feedforward Neural Network Architecture

Processing in WM was implemented as a feedforward neural
network. On each trial, the network was given information about the
current task (two-back vs. three-back), the current stimulus
presented to perception (letter on a computer screen), a representa-
tion of the temporal context of the current stimulus (i.e., distinct for
each stimulus; see Section Formulation of Context Representations),
and a memory trace retrieved from EM based on the current stimulus
(explained below). The input layer consisted of five input pools: The
first two pools represented the currently perceived stimulus (st;
represented as a one-hot vector) and its associated temporal context
representation (ct; described below); the next two pools used the
same coding scheme to represent the stimulus and context
components of a memory trace (sm, cm, respectively), retrieved
from EM (see Section EM Component); the final pool was a two-
dimensional one-hot vector k that instructed the model about the task
condition (e.g., two vs. three back in the N-back task). The current
stimulus and context, together with the retrieved stimulus and
context, were projected to the first hidden layer (h1). The one-hot
task instruction vector was also projected and summed into h1.
Then, the resulting vector was projected to an additional hidden
layer (h2) that, in turn, projected to an output layer used to represent
the response of the network to the current stimulus, indicating
whether or not it judged that stimulus to match the nth previously

presented stimulus. Processing in the feedforward network was
defined by the following equations (see also Figure 2):

h1 = f ðst , ct , sm, cmÞ + f ðkÞ h2 = f ðh1Þ output = smðh2Þ, (2)

where st and sm are 20-dimensional vectors representing stimuli, and
cm and ct are 25-dimensional vectors representing context; f (·) is an
80-unit feedforward layer with rectified linear units (ReLU); sm (·) is
a softmax nonlinearity mapping from hidden units to output units;
and output is a two unit layer with activation of the first unit
representing the probability of a “yes” response, and activation of
the second unit representing the probability of a “no” response.

The patterns of activity provided as input to the network, together
with those over its hidden units (including the representations
retrieved from EM), can be thought of as the information currently
represented in WM, while computations carried out on these
patterns of activity constitute the “working” function of WM. Note
that none of the units in this network have persistence or integrator
properties—whenever a new stimulus is presented and/or a retrieval
is made from EM, they fully replace the previous corresponding
patterns of activity. Nor are there any recurrent connections among
units within or between layers. Thus, the network does not have the
capacity to actively maintain any information in WM across
stimulus presentations, nor do its prior states in any way influence its
current computations. Rather, retention of information and any other
effects of memories from prior trials are subserved exclusively by
the EM component of the model, as described above.

Feedforward Neural Network Training

The network described above was trained in the simplest possible
way in order to perform the N-back task. In this task, a participant is
presented with a sequence of stimuli, one at a time, and must judge
whether each stimulus matches the one presented n stimuli ago in the
sequence. For example, in the two-back version, for the sequence
A-A-B-C-B-A the correct response is “no” for the first four stimuli
and the last, while it is “yes” for the fifth stimulus (the repeat of the
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Figure 1
Lower Discriminability Between Target Item and Lure for Three-Back Compared to Two-Back

Note. Left and middle panels: Histograms showing distance between current item and target item (green) or neighboring lure (blue) for two-back (left) and
three-back (middle) targets. Note greater overlap between targets and lures for three-back compared to two-back task. Right panel: ROC curves for
distinguishing target from lures in three-back (yellow) and two-back (red). ROC= Receiver Operator Characteristic. See the online article for the color version
of this figure.
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“B” that appeared two stimulus after the first). While a naive
participant might never have actually performed this particular task,
people nevertheless come to the task knowing both how to match
two representations based on a specified stimulus feature and how to
discern relative serial positions. To capture this prior knowledge that
is required to perform the task, we trained the neural network to
determine whether: (a) the stimulus component of the trace retrieved
from EM (sm) was the same as the stimulus component of the current
external input (st); and (b) the context component of the trace (cm)
was n (2 or 3) steps earlier than the context component of the current
external input (ct). That is, each training epoch consisted of a
judgment about whether the stimulus and context components of a
trace retrieved from EM was an n-back match to the stimulus
and context components of the current input. This gave
four combinations of external (stimulus plus temporal context)
and memory trace inputs to the network: match (matching
stimulus, n-back context), nonmatch (nonmatching stimulus, not-
n-back context), stimulus-only match (matching stimulus, not-n-
back context), and context-only match (nonmatching stimulus,
n-back context). Note that, while training the network, we did not
explicitly model the EM retrieval process, nor the mechanisms
responsible for coordinating EM retrieval with processing by the
feedforward network.5 These generally involve the inclusion of
recurrent networks that would potentially confound the interpreta-
tion of results of interest in our study. Thus, both for simplicity of
implementation and clarity of interpretation, we chose not to include
such mechanisms while training the present model (though we did
include an EM retrieval mechanism that was coordinated with
processing by the feedforward network when the model was tested,
as described in Section Similarity-Based Retrieval, Match, and
Response Processes). In the General Discussion, we return to this
issue, which we consider an important direction for future research.
The network was first pretrained to process the four input

combinations described above, and was then combined with the EM
module to perform the N-back task for testing (as described below).
Since training involved learning to make relative serial position
determinations, and this in turn relied on the nature of the
temporal context encodings (see Section Formulation of Context

Representations), we trained the model on stimuli presented at
various serial positions in a sequence of length 48 (the number of
stimuli per block in the M. J. Kane et al., 2007 empirical study to
which we compared model performance). We did so by simulating a
sequence of 48 steps of temporal evolution (“drift”) in the context
representation (see Section Formulation of Context Representations),
and then setting the context component (ct) of the current input to a
randomly selected step in that sequence. The stimulus component of
the input was then selected from the set of possible one-hot stimulus
vectors. The outcome of this process was a sequence of stimuli that
were accompanied by a drifting context representation. Finally, the
task input was determined by alternating the task specification (two-
back or three-back) and randomly selecting from one of the four
possible conditions, which was then used to assign the stimulus (sm)
and context (cm) components of the trace retrieved from EM, as
follows:

1. match trial: The same vector used for st was assigned to
sm (st = sm), and cm was the context from n steps before
the current context (cm = ct(t − n));

2. nonmatch trial: sm was a randomly chosen one-hot vector
different from the current stimulus (st ≠ sm), and cm was
randomly drawn from the context values from less than 2n
steps ago excluding n (cm= c (t− k); k in [t− (2n− 1), … ,
t − n − 1, t − n + 1, … , t − 1]);

3. stimulus-only match trial: sm was assigned as in a match
trial (st= sm), while cmwas assigned as in a “nonmatch” trial
(cm= c (t− k); k in [t− (2n− 1), … , t− n− 1, t− n+ 1, … ,
t − 1]);

4. context-only match trial: The sm was assigned as in a
nonmatch trial (st ≠ sm) while cm was assigned as in a
match trial (cm = c (t − n)).
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Figure 2
Schematic Showing the Organization and Sequence of Processing Steps in the Model of
the N-Back Task

Note. Model. (i) The stimulus is presented; (ii) the stimulus serves to cue memory traces; (iii) the
stimulus and memory along with their respective context values are passed through the WM neural
network to (iv) produce a response. If no match is found, (v) the model resamples from EM and
continues. WM = working memory; EM = episodic memory.

5 Both the mechanisms responsible for EM retrieval, and for coordinating
interactions between EM and WM, are interesting and important subjects of
ongoing investigation (Graves et al., 2014; Norman&O’Reilly, 2003; Pritzel
et al., 2017; Ritter et al., 2018; Wayne et al., 2018; Webb et al., 2021).

6 BEUKERS, HAMIN, NORMAN, AND COHEN



On each training trial, a single forward processing and backward
weight-adjusting pass of the backpropagation algorithm (Rumelhart
et al., 1986) was executed. The training labels were “Yes” for match
trials and “No” for all other trial types. 40% of the training trials
were match trials and the other 60% of training trials were evenly
divided among the other trial types. Training trials were alternated
between the two-back and the three-back conditions of the task. The
model was trained on 400,000 trials per task (total of 800,000
epochs). During model testing, learning was disabled, so that no
additional weight changes were possible.

Similarity-Based Retrieval, Match, and
Response Processes

To simulate performance of the N-back task, we incorporated the
EM mechanism described in Section EM Component, that stored
traces of the stimulus and associated context (one for each item
presented in a sequence of trials of the task) with the feedforward
model trained on the discrimination and match process as described
just above. This further required specification of how, on each trial,
items were retrieved from EM and provided as input to the WM
network (see note in Section Feedforward Neural Network
Training). Inspired by previous work that has combined neural
networks with EM storage, we implemented EM retrieval using a
similarity-based search process (Graves et al., 2014; Lu et al., 2022;
Ritter et al., 2018; Wayne et al., 2018; Webb et al., 2021). In the
present model, the current stimulus and accompanying context
representation were used as retrieval cues. On each trial, the model
computed the similarity of the currently presented stimulus st and
corresponding context ct, with each stimulus (sm) and context (cm)
pair stored in EM. An overall memory similarity was calculated as a
weighted sum of these terms:

sim = w1 cosðct , cmÞ + w2 cosðst , smÞ: (3)

Note that the similarity between the current input and each
memory trace was computed separately for their stimulus and context
components, and weighted according to w1, w2 before combining
them into a single similarity score for each trace. A single relative
weighting of stimulus-based similarity (w1) and context-based
similarity (w2), which was held constant across all comparisons, was
optimized to best fit behavioral data (see Section Results below). The
values we arrived at werew1= 0.05 andw2= 0.95, indicating that the
model was weighting context informationmore heavily than stimulus
information when computing the similarity score.6 The retrieval
process then proceeded as follows:

1. a softmax was computed over the similarities between the
current input and all traces in EM, to get the probability
of retrieval of each memory;

2. the softmax values were used to probabilistically select a
memory for retrieval (without replacement, as in Polyn
et al., 2009; see step 5 below) which was passed to the h1
hidden layer of the WM network, along with the current
stimulus and context;

3. if the WM network detected a match, the retrieval process
terminated and the model responded “match”;

4. if no match was detected in step 3, with probability hrate,
the retrieval process was terminated and the model
responded “no match” (hrate = 0.04 across all tasks and
conditions and was determined along with w1 and w2 by a
fit to empirical data; see Section Results);

5. if no match was detected in step 3, and step 4 did not
probabilistically trigger a “no match,” steps 2–4 were
repeated until the memory search terminated or until there
were no more memories in EM to sample in which case the
model also responded with “no match.”

Thus, in summary, the EM retrieval process amounted to
sampling memory traces from EM in proportion to the similarity of
the currently presented stimulus and context to the stimulus and
context of each EM trace (weighted by w1 and w2, respectively) and
continued on a given trial either until the retrieved trace was judged
to be an N-back match to the current stimulus or it was terminated
probabilistically (according to the hazard rate hrate).

N-Back Simulation and Analysis

We simulated the experiments conducted by M. J. Kane et al.
(2007), which compared three-back versus two-back in eight blocks
of 48 trials each, using eight phonologically distinct letters. The
analysis involved distinguishing eight different conditions, defined
by the crossing of three factors: set size (two- vs. three-back
instruction), match versus nonmatch (does the current stimulus
match the n-back stimulus), and the presence or absence of a lure
(does the current stimulus also match the n − 1 back stimulus).
Crossing the match and lure factors yielded four sequence types
(closely related but not identical to the training conditions described
above); for example, in the three-back condition, these were: (a)
match sequences (A B C A); (b) nonmatch sequences (B C D A); (c)
match-lure sequences (A A B A); and (d) nonmatch-lure sequences
(B A CA).7 Thus, sampling these four sequence types for the two set
sizes (two-back and three-back) yielded eight conditions, that we
used in our simulations. Following the M. J. Kane et al. (2007) study,
simulated trials were constructed in blocks of 48; each trial involved
presenting a stimulus drawn from one of the eight possible conditions
at a particular point in the block, and the model had to judge whether
that stimulus was an n-back match or not. To simulate the tth trial in a
block, the current (tth) stimulus was randomly drawn from the set of
possible stimuli (e.g., it was set to A). Then, depending on the
experimental condition being simulated, the preceding n stimuli were
selected to instantiate that condition, by loading them into EM. To
simulate the key assumption that EM traces are durable, EMwas also
loaded with randomly selected stimuli for all of the trials in that block
preceding the one n-back. For example, in the 19th trial of a three-
back block, if the current stimulus was A in a match sequence, then
the 16th, 17th, and 18th stimuli would be chosen as A, B, and C, so that
three-back stimulus (A) matched but the two-back (B) did not. Then,
the stimuli for the preceding trials in the block (i.e., the 1st through
15th trials) were randomly chosen from the set of all possible stimuli,
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6 This difference in weighting could potentially reflect the fact that
differences in context vectors from trial to trial were smaller in magnitude
than differences in stimulus vectors.

7 InM. J. Kane et al. (2007), these sequence types are referred to as control
target, control foil, lure target, and lure foil, respectively.
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such that on the 19th trial, the model has 18 EM traces available for
retrieval, some of which could match the current stimulus. Finally,
we generated a drifting sequence of t context vectors (one per trial), in
which the tth context vector in the sequence was designated as the
current context, and we stored episodic memories for the t − 1 trials
preceding the current trial each pairedwith the corresponding context
vector (e.g., the EM trace corresponding to the 15th trial would
contain the 15th stimulus and the 15th context vector). Once the
current stimulus and context were fixed, and the contents of EMwere
defined, the model produced a response as described in Section
Similarity-Based Retrieval, Match, and Response Processes.

Results

We compared the results of the simulations described above with
those reported by M. J. Kane et al. (2007), using the same signal-
processing metrics to analyze performance that they used to analyze
their empirical data (hits, correct rejections, d′ sensitivity, and
C bias). These were calculated separately for each of the eight
conditions (again, two-back and three-back set sizes crossed with
the four sequence types). Figure 3 shows that the pattern of results
from the simulations closely matched those of the empirical study.

Set-Size effect

In the N-back task, the set-size effect manifests as lower
sensitivity in the three-back task compared to the two-back task.
This effect was robustly present both in humans and the model. The
human data show a strong main effect of lower hit-rate in the three-
back compared to the two-back condition. This was also observed in
the model.8

Lure Effects

In theN-back task modeled here, the term “lure” is used to refer to
a sequence of stimuli in which a stimulus in the n − 1 position
matches the current stimulus. This could occur either in match
sequences (which also contain an n-back match) or in nonmatch
sequences (which do not contain an n-back match). The lure effect
manifests as lower sensitivity in conditions with (vs. without) lures,
as the n − 1 back item is likely to be confused with the n-back item.
We found that this effect of reduced sensitivity was robustly present
both in humans and in the model. The lure effect was primarily
driven by higher false alarm rates to nonmatch-lure sequences (e.g.,
for three-back, B A C A) than to nonmatch sequences (B C D A).
False alarms to nonmatch-lure sequences occur because noise
accumulation in context drift can lead to confusion between adjacent
serial positions (see Figure 1); for example, in the sequence B A C
A, when the A that occurred in the n − 1 position is retrieved, the
retrieved context is sometimes misattributed to the n-back position,
leading to a spurious “match” response. Interestingly, the effect of
the lure manipulation on hits was different in the model as compared
to humans. The model showed more hits on lure trials than
nonmatch trials for the same reason it showed more false alarms on
lure trials—it would sometimes give a spurious “match” response
after retrieving a lure. Humans showed the opposite pattern of
results in the three-back condition (more hits on control trials than
lure trials), an observation that will require additional modeling
and/or empirical work to understand.

General Discussion

In this article, we presented a model of the N-back task that
simulated human performance on this task, exhibiting empirically
observed set-size (as well as lure) effects that, in the model, arose
strictly from PI due to contextual drift and degradation of temporal
distinctiveness in the retrieval of information from EM. Our findings
lend support to the view that EMmay be engaged by—and contribute
to set-size effects in—tasks widely used to index WM function, as
discussed further below. The demonstration of these effects is
particularly relevant in the context of the N-back task, given both its
wide use as an index of WM function (M. J. Kane et al., 2007;
Oberauer et al., 2018), and because our findings suggest that the
strong set-size effects observed in this task need not be attributed to
constraints in either the storage or processing capacity of WM (e.g.,
Rac-Lubashevsky & Kessler, 2016). As reviewed above, our model
showed robust set-size effects despite having no capacity whatsoever
for the retention of information in WM (all information about
previous stimuli was stored in EM), and despite having sufficient
WM processing capacity to handle the demands of the task (WM
processing simply involved comparing the information retrieved from
EMwith the information currently inWMand generating a response).
In the remainder of this discussion, we consider the relationship of our
model to other models of the N-back task, as well as current theories
of EM, WM, and their interactions.

Relationship to Existing N-Back Models

To date, there have been relatively few published mechanistic
models of the N-back task. Here, we compare our model to two of
these that are representative of how previous work has treated the
role ofWM in performance on theN-back task. One of these models,
reported by Chatham et al. (2011), used a neural network to
implement a biologically plausible mechanism for the active
maintenance and processing of information in WM, based on a
previous model of prefrontal cortex and basal ganglia function
(Frank et al., 2001). Chatham et al. (2011) showed that this model
could replicate set-size and lure effects in the N-back task. Our
findings complement these results, showing that a neural network
model that uses WM to process information (i.e., evaluate for a
match and elicit a response), but that relies exclusively on EM rather
than active maintenance in WM for retaining information across
trials, can produce comparable results.

Another model, reported by Juvina and Taatgen (2007), explores
how two different strategies can be used to perform the N-back task.
One of these relies on the active maintenance of information inWM,
paralleling at an abstract level the Chatham et al. (2011) model. The
other strategy relies on a form of storage similar in important
respects to more recently proposed alternative forms of storage in
WM (Oberauer, 2019; Stokes, 2015; discussed further below, in
Section Relationship to “Dual System” Models of Immediate
Memory). Juvina and Taatgen refer to these strategies as “high
control” and “low control,” respectively, and implemented them in
two distinct models using the ACT-R architecture (Anderson et al.,
1997). In their high-control model, a window of size n stimuli was
actively maintained by a rehearsal process, and the ordinal position of
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8 We report findings here for the two set-sizes studied in M. J. Kane et al.
(2007). Findings for a wider range of set-sizes are reported in the Appendix.
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Figure 3
Comparison of Model Performance With Empirical Data From M. J. Kane et al. (2007)

Note. (A) Human and (B) model results, showing hit rate (correctly replying “match” on match and match-lure trials), correct rejection rate
(correctly replying “no match” on nonmatch and nonmatch-lure trials), sensitivity, and bias, as a function of set size (two-back vs. three-back) and
whether or not a lure was present at the n − 1-back position (see text for explanation of sequence types). Error bars indicate the standard error of the
mean. (A) Human data reproduced from “Working memory, attention control, and the n-back task: A question of construct validity,” by M. J. Kane,
A. R. A. Conway, T. K. Miura, and G. J. H. Colflesh, 2007, Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), pp. 615–
622 (https://doi.org/10.1037/0278-7393.33.3.615). Copyright 2007 by the American Psychological Association. (B) Data from model simulations,
averaging across 10 runs of the model, corresponding to N = 10 participants. See the online article for the color version of this figure.
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each item was encoded by the item’s position in this actively
maintained window. This can be thought of as implementing a WM-
based mechanism for retaining information in an actively maintained
state. In contrast, in their low-control model, each item was stored
along with a time-tag that specified the moment of encoding,
following the time-tag account of Yntema and Trask (1963). This
implements a form of temporal context dependence similar to the one
implemented in our model: Time-tags were encoded in memory and
then retrieved (in response to repeated stimuli) and used to make
serial position judgments.
Critically, however, an important difference between the

storage mechanism in Juvina and Taatgen’s low-control model
and the one in the model presented here is that theirs involved
memory decay that was used to explain the set-size effect (i.e.,
memories decayed with time, making three-back targets less
likely to be retrieved than two-back targets). By contrast, the
model presented here relied on noisy contextual drift and
temporal distinctiveness to explain set-size effects, without
positing any dedicated decay mechanisms. This reliance on
temporal distinctiveness (and not decay) to explain set-size
effects aligns with classic work suggesting that decay, on its own,
is not a major source of forgetting in EM (e.g., A. Baddeley &
Hitch, 1977). As discussed in the next section, our model
implements time-tags in a form that is also closely related to other
models of temporal context-based memory (Howard & Kahana,
2002; Polyn et al., 2009), while using a formally specificied while
neurally plausible representational coding scheme (i.e., as value-
constrained drifting context vectors), and shows how a simple
neural network model can learn to use such context vectors to
perform the temporal discrimination and matching processes
required by the task. Thus, while our model aligns with the
theoretical proposition advanced in Juvina and Taatgen (2007)
and by others (e.g., Oberauer et al., 2012)—that set-size effects
may not necessarily reflect reliance on active maintenance in WM
for retention—it relies on a different mechanism for explaining
degradation in performance with set size, which is more closely
aligned with contemporary work on storage and retrieval from
EM (discussed below) than other forms of WM, while also
offering a neurally plausible implementation of the mechanisms
involved. It also relates closely to the growing body of work on
neural network models that make use of interactions between EM
and WM for higher cognitive functions, such as planning and
generalization, to which we return in Section Other Interactions
between EM and WM.

Relationship to Existing Context and Temporal
Distinctiveness Models

Our model of storage and retrieval from EM aligns closely with
existing context-based memory models, such as the TCM (Howard
& Kahana, 2002) and the context maintenance and retrieval model
(Lohnas et al., 2015; Polyn et al., 2009). These models explain a
wide range of findings from serial recall and free recall paradigms in
terms of a gradually drifting temporal context representation. For
example, recency effects in free recall (i.e., better recall of more
recent items) can be explained as a consequence of a greater match
between the current context and the context associated with recent
(vs. more temporally distant) memories (Howard & Kahana, 2002).
Here, we focus on a different consequence of the similarity

properties of context representations as a function of time: If drifting
context representations carry serial position information that is
reinstated by retrieved EM traces, this serial position information
can be used for carrying out task-relevant computations in WM—in
this case, identifying whether an item was presented two-back or
three-back. Extending the work of Brown et al. (2007) and others,
we show how confusability of retrieved context representations can
lead to memory errors in the N-back task.

Relationship to “Dual System” Models of
Immediate Memory

The model we present here is certainly not the first to posit that
more than one system may contribute to immediate memory. Dating
back to at least James (2007), it has been acknowledged that such
memory is best explained as multiple interacting systems. Here, we
compare and contrast our model with two notable instances of such
models in the literature: the dual-system framework of Unsworth
and Engle (2007) and the “serial-order-in-a-box”–complex span
(SOB-CS) model of Oberauer et al. (2012).

Following from terminology introduced by William James,
Unsworth and Engle (2007) describe a model composed of two
interacting memory systems, primary memory and secondary
memory. Similar to traditional concepts of WM, primary memory
is described as a dynamic and attention-driven component that
manipulates a small number of items (2–7). This capacity constraint
is then used to explain limitations in performance such as the set-size
effect. Unsworth and Engle (2007) also describe a secondary
memory component that, like our EM module, has no capacity
constraints and from which items must be retrieved by a
probabilistic cue-dependent retrieval process. The difference
between this secondary memory mechanism and the model of
EM presented here relates to the process responsible for retrieval.
Specifically, retrieval from secondary memory is achieved through
an active search process, that strategically formulates cues to
delineate a search set from which a memory is sampled. In contrast,
in our model, retrieval from EM is automatically triggered on every
trial, by the similarity between the item and context currently active
inWM and the item and context stored in EM traces. Thus, while the
framework in which our model was constructed allows for the
possibility that additional strategic processes may be involved in
actively searching for and selecting cues to constrain what
information is retrieved from EM (e.g., processes that might come
into play at the very beginning of the experiment, to determine that the
current stimulus and context are all that are needed to cue retrieval
from EM), our model suggests that such strategic mechanisms are not
needed—at least not on a trial-by-trial basis—to account for the set-
size and lure effects that are observed empirically.

Along these lines, an additional parallel between our work and
that of Unsworth and Engle (2007) relates to the use of a context
representation to guide the retrieval process. Although their theory
does not formally specify the coding scheme of context representa-
tions, the authors make the intriguing suggestion that context could
be hierarchically specified. For example, when studying a list of
items, each item would be associated with a global context, a list
context, and an item-level context. Here, we formally represent
the item-level context as an automatic temporal drift process, in line
with the existing formalisms from the EM literature, and in
particular, the temporal context memory model of Howard and
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Kahana (2002). An interesting future direction might be to explore
what other phenomena could be modeled if we allowed context
representations to be hierarchically structured, and/or have different
content and/or dynamics under different circumstances that might
even be strategically controlled. For example, to model the effect of
list-level context, we could either augment the context vector to have
different entries that drift at different rates and/or allow for the
context to take a single large step at the end of a list. In both cases,
this should have the effect of making items from different lists more
distinguishable than ones within lists.
In another dual-system model, Oberauer et al. (2012) built on the

“context-serial-order-in-a-box” (C-SOB) model (Farrell, 2006;
Lewandowsky & Farrell, 2008) to propose the SOB-CS model
for the complex span task. On each trial of this task, participants are
given a list of items to remember followed by a distractor task (e.g.,
doing algebra, or making a lexical decision) after which they must
recall the list. The task is designed to tax the participant’s ability to
retain information while performing manipulations in WM. Like the
Unsworth and Engle (2007) model, the SOB-CS model is also
composed of two components. Similar to primary memory, SOB-
CS has a mechanism for the focus of attention that contains a
limited amount of activated information available for processing
(corresponding to WM). Similar to secondary memory, memories
that are in the focus of attention are stored along with their context
in a more durable component from which items can later be
retrieved (corresponding to EM).
Our model is similar to SOB-CS in that it explains memory

failures in terms of interference (as opposed to decay) mechanisms.
However, it differs with respect to how this arises. In SOB-CS, items
are associated with their respective context by Hebbian learning in a
weight matrix, which is used to store them in secondary memory.
Importantly, this applies both to memory list items and items in the
distractor task. Because memories are stored in the same weight
matrix that has a fixed dimensionality (i.e., constrained capacity),
they can interfere with and eventually start overwriting each other.
Oberauer et al. (2012) show that, as memories accumulate in the
memory matrix, such interference can explain a series of memory
effects including the set-size effect and serial position effects in list
recall. The effects in our model have some similarities to those
exhibited by SOB-CS, and at some level of abstraction, these
models may be formally related to one another. However, the
mechanisms underlying these effects differ: in our model memories
in EM accumulate independently without directly interfering with
one another, and interference is driven entirely by the effects of
similarity structure on retrieval—in particular, the similarity of
items with respect to their temporal context representations.
Another difference between our model and SOB-CS is the

forgetting mechanism. To prevent interference from completely
bogging down memory, Oberauer et al. (2012) posit an active
retrieval mechanism implemented by Hebbian antilearning that
clears the irrelevant items from the memory matrix during free time.
In contrast, in our model, an effect comparable to “clearing” is
accomplished without any dedicated machinery for this; rather, once
again it emerges directly from an interaction between the two
fundamental mechanisms in the model: encoding of slowly drifting
temporal context representations and similarity-based retrieval. As
the current temporal context representation drifts further away from
the context representations associated with the previous items, those

previous items become less accessible for retrieval and thus less
interfering.

Perhaps the most important, broader observation to be made
about efforts to model immediate memory is that the gap between
models of WM and EM has narrowed considerably: Mechanisms
that previously had been part only of EMmodels (e.g., item-context
binding) are now frequently included in models of WM, such as the
Oberauer et al. (2012) model discussed above; at the same time,
effects historically associated with WM (such as set-size effects) are
increasingly being considered with respect to EM. In this context,
we emphasize that the goal of the work reported here was not to
promote the exclusive, or even primary role of EM in contributing to
retention of information in WM tasks (in general) or the N-back task
(in particular). Rather, it was to help refine the functional definition
of and distinction between these memory mechanisms, and to
demonstrate in as clear a way as possible that three fundamental
properties associated with EM (similarity-based retrieval of durable
memory traces that bind items to a drifting temporal context) are
sufficient to account for set-size and lure effects in a task widely used
to probe WM function (i.e., the N-back task), without asserting
either their necessity or primacy.

Other Interactions Between EM and WM

In this theoretical note, for the reasons just mentioned, we focused
on one form of complementary interaction between EM andWM, in
which EM serves as the mechanism for retention, and WM for
computation. In reality, it is almost certain that performance in any
given task relies on the participation of both, in ways that vary by
task condition. Indeed, a growing number of models suggest
interactions between EM and WM may be a central, not just an
incidental feature of cognitive function (A. Baddeley, 2000;
Beukers et al., 2021; Cowan, 1999, 2019; Dulberg et al., 2021;
Foster et al., 2019; Oberauer, 2009; Rose, 2020; Webb et al., 2021).
For example, Cohen and O’Reilly (1996) proposed that an
interaction between these systems may provide an account of
prospective memory—that is, remembering to perform a task in the
future (Einstein & McDaniel, 2005)—in which EM serves to store
an association between a representation of the desired task and the
circumstances in which it is to be performed, so that the task
representation can be retrieved when those circumstances occur.
This provides a mechanistic undergirding of two-process theories of
prospective memory (Einstein & McDaniel, 2005; McDaniel &
Einstein, 2000, 2007), which have received empirical support from
both behavioral and neural data (e.g., Beck et al., 2014; Einstein
et al., 2005; Lewis-Peacock et al., 2016; McDaniel et al., 2013), and
have recently been subjected to normative analysis (Momennejad
et al., 2021). Furthermore, recent work in machine learning has
suggested that interactions between EM and recurrent neural
network mechanisms that support gradual learning andWM (such as
long short-term memory mechanisms, Hochreiter & Schmidhuber,
1997) may be critical for other forms of higher cognitive function,
such as the learning of abstract rules and their use in reasoning and
problem solving (Altabaa et al., 2023; Graves et al., 2014; Mondal et
al., 2023; Vaishnav & Serre, 2022; Webb et al., 2021). In this light,
the work presented in this article contributes to research addressing
the computational relationship between EM and WM, a direction
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that promises to be an increasingly important and productive one for
understanding higher cognitive function.

Concluding Remarks

Advancing our understanding of human cognitive function
requires understanding how different subsystems interact, including
the different memory systems. In this theoretical note, we focused on
one potential interaction, between WM and EM. Our model provides
a neural network implementation of how context representations may
be encoded in and used for retrieval from EM, and how this may be
used for WM computations involving serial position information.
We describe a computational account of these interactions,
showing that they can produce set-size and lure effects in the
N-back task similar to those observed in human performance. The
robust nature of these effects in theN-back task has likely contributed
to its widespread use as an index of WM function, under the
assumption that they reflect limits to the storage and/or processing
capacity commonly ascribed to WM. The work presented here joins
other lines of work that suggest caution is warranted in this inference,
reinforcing the idea that well-established properties of EM—

similarity-based retrieval of temporal context representations—are
sufficient to elicit such effects. Future work should focus on the
development ofmore detailed experimental and analysis methods that
can be used to disambiguate the contributions ofWM and EM to task
performance, as well as their interaction in the service of memory and
their role in higher cognitive function. We also hope that the
formulation of our model within the context of a neural network
architecture will facilitate contact with work both in neuroscience and
machine learning that explores the mechanisms of interaction
between EM and WM.
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Figure A1
Performance of the Extended Model on Two- to Five-Back Conditions

Note. Extended version of model results from Figure 3 showing hit rate (correctly replying “match” on match and match-lure trials), correct rejection rate
(correctly replying “no match” on nonmatch and nonmatch-lure trials), sensitivity, and bias, as a function of set size (two-back all the way through five-back)
and whether or not a lure was present at the n − 1-back position. Ctrl refers to the control condition. See the online article for the color version of this figure.

Appendix

Extended Version of the N-Back Model

Figure A1 shows an extended version of the model results from
Figure 3, with N-back values extending from 2 to 5. Methods for
these simulations were the same as for the simulations in the main
text; the only difference is that four-back and five-back conditions
were included. Sensitivity (indexed using d′) drops to zero in the

five-back control condition and the four-back lure condition. This
finding could naively be interpreted as reflecting a strict limit in
storage and/or processing capacity, but—in the model—it is driven
by the decreasing discriminability of retrieved contexts for adjacent
serial positions as N-back increases.
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